已知向量a=(cosλθ,cos(10-λ)θ),b=(sin(10-λ)θ,sinλθ),λ、θ∈R.
(1)求|a|2+|b|2的值;
(2)若a⊥b,求θ;
(3)若θ=,求證:a∥b.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量=(3,-4),=(6,-3),=(5-m,-3-m).
(1)若點(diǎn)A,B,C不能構(gòu)成三角形,求實(shí)數(shù)m滿足的條件;
若△ABC為直角三角形,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面斜坐標(biāo)系xOy中,∠xOy=60°,平面上任一點(diǎn)P關(guān)于斜坐標(biāo)系的斜坐標(biāo)是這樣定義的:若=xe1+ye2(其中e1、e2分別為與x軸、y軸同方向的單位向量),則P點(diǎn)斜坐標(biāo)為(x,y).
(1)若P點(diǎn)斜坐標(biāo)為(2,-2),求P到O的距離|PO|;
(2)求以O(shè)為圓心,1為半徑的圓在斜坐標(biāo)系xOy中的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知關(guān)于x的方程:x2-(6+i)x+9+ai=0(a∈R)有實(shí)數(shù)根b.
(1)求實(shí)數(shù)a,b的值.
(2)若復(fù)數(shù)滿足|-a-bi|-2|z|=0,求z為何值時,|z|有最小值,并求出|z|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,設(shè)向量m=(a,b),n=(sin B,sin A),p=(b-2,a-2).
(1)若m∥n,求證:△ABC為等腰三角形;
(2)若m⊥p,邊長c=2,C=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四點(diǎn)A(x,0),B(2x,1),C(2,x),D(6,2x).
(1)求實(shí)數(shù)x,使兩向量,共線.
(2)當(dāng)兩向量與共線時,A,B,C,D四點(diǎn)是否在同一條直線上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若在數(shù)列中,對任意正整數(shù),都有(常數(shù)),則稱數(shù)列為“等方和數(shù)列”,稱 為“公方和”,若數(shù)列為“等方和數(shù)列”,其前項(xiàng)和為,且“公方和”為,首項(xiàng),則的最大值與最小值之和為( )
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com