甲、乙兩人在一次賽跑中路程s與t的函數(shù)關(guān)系如圖所示,則下列說法正確的是(  )
A、甲比乙先出去
B、乙比甲跑的路程多
C、甲先到達(dá)終點(diǎn)
D、甲、乙兩人的速度相同
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)圖象法表示函數(shù),觀察甲,乙的出發(fā)時(shí)間相同;路程S相同;到達(dá)時(shí)間不同,速度不同來判斷即可.
解答: 解:從圖中直線的看出:甲,乙的出發(fā)時(shí)間相同;甲乙兩人所走的路程相同,即S=S;故可排除AB;
從圖中圖象的橫坐標(biāo)可看出:甲用的時(shí)間小于乙用的時(shí)間,故甲先到達(dá)終點(diǎn),
而兩人的路程相同,所以甲的速度大于乙的速度,故C正確,D錯(cuò)誤,
故選:C.
點(diǎn)評(píng):本題考查函數(shù)的表示方法,圖象法.注意:要從圖象中看出題目的信息是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


執(zhí)行如圖所示的程序框圖,輸出結(jié)果S的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式x2-3x+m<0是{x|1<x<n}(n>1).
(1)求實(shí)數(shù)m,n的值;
(2)若正數(shù)a,b滿足:ma+2nb=1,求a-b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心與拋物線y2=4x的焦點(diǎn)關(guān)于直線y=x對(duì)稱,又直線4x-3y-2=0與圓C相切,則圓C的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象如圖所示,則其導(dǎo)函數(shù)f′(x)的圖象大致形狀是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|(x-2)(x-3a-1)<0},y=lg
2a-x
x-(a2+1)
的定義域?yàn)榧螧.
(1)若A=B,求實(shí)數(shù)a;
(2)是否存在實(shí)數(shù)a使得A∩B=ϕ,若存在,則求出實(shí)數(shù)a的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l1:ax+3y+1=0,l2:(a+1)x+2y+5=0,若l1∥l2,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點(diǎn)A(3,1)與x軸正向、y軸正向分別交于M、N兩點(diǎn),則|MA|•|NA|的最小值為( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐V-ABC中,點(diǎn)E、F分別為VB、VC的中點(diǎn).平面VAB⊥平面ABC,平面VAC⊥平面ABC.
(1)求證:EF∥平面ABC;
(2)若二面角C-VB-A為90°,且VA=BC=
1
2
AC,求二面角A-VC-B的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案