如圖,已知AB⊥AC,AB=3,AC=
3
,圓A是以A為圓心半徑為1的圓,圓B是以B為圓心的圓.設(shè)點(diǎn)P,Q分別為圓A,圓B上的動(dòng)點(diǎn),且
AP
=
1
2
BQ
,則
CP
CQ
的取值范圍是
 

考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:設(shè)∠QBA=θ,則∠PAC=90°+θ,從而有
CP
=
AP
-
AC
,
CQ
=
BQ
-
BC
,通過計(jì)算求出即可.
解答: 解:設(shè)∠QBA=θ,則∠PAC=90°+θ,
CP
=
AP
-
AC
,
CQ
=
BQ
-
BC

CP
CQ
=(
AP
-
AC
)(
BQ
-
BC

=
AP
BQ
-
AP
BC
-
AC
BQ
+
AC
BC

=2-0-
3
cos(90°+θ)+3
=5+
3
sinθ,
∵-1≤sinθ≤1,
CP
CQ
∈[5-
3
,5+
3
].
點(diǎn)評(píng):本題考查了平面向量的數(shù)量積的運(yùn)算,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合U={1,2,3,4,5,6,7},A={2,4,5,7,},B={3,4,5},則(∁UA)∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在x軸上的雙曲線的漸近線方程為y=±
1
3
x,則雙曲線的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓C的方程為
x2
5
+
y2
m
=1,焦點(diǎn)在x軸上,與直線y=kx+1總有公共點(diǎn),那么m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩位同學(xué)在高二5次月考的數(shù)學(xué)成績(jī)統(tǒng)計(jì)如莖葉圖所示,若甲、乙兩人的平均成績(jī)分別是
.
x
、
.
x
,則下列正確的是( 。
A、
.
x
.
x
,甲比乙成績(jī)穩(wěn)定
B、
.
x
.
x
,乙比甲成績(jī)穩(wěn)定
C、
.
x
.
x
,甲比乙成績(jī)穩(wěn)定
D、
.
x
.
x
,乙比甲成績(jī)穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a(x+1)ln(x+1)圖象上的點(diǎn)[e2-1,f(e2-1)]處的切線的斜率是3,求:f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是雙曲線x2-
y2
15
=1的兩個(gè)焦點(diǎn),以F1,F(xiàn)2為焦點(diǎn)的橢圓E的離心率等于
4
5
,點(diǎn)P(m,n)在橢圓E上運(yùn)動(dòng),線段F1F2是圓M的直徑         
(1)求橢圓E的方程;               
(2)求證:直線mx+ny=1與圓M相交,并且直線mx+ny=1截圓M所得弦長(zhǎng)的取值范圍為[
2
143
3
,
2
399
5
].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=
3x
上過點(diǎn)(1,1)的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|
1
3
<3x<9},B={x|log2x<2}.
(1)求A∩B和A∪B;
(2)定義A-B={x|x∈A且x∉B},直接寫出A-B和B-A.

查看答案和解析>>

同步練習(xí)冊(cè)答案