已知焦點(diǎn)在x軸上的雙曲線的漸近線方程為y=±
1
3
x,則雙曲線的離心率等于
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的漸近線方程,可得a=3b,再由a,b,c的關(guān)系以及離心率公式計(jì)算即可得到.
解答: 解:焦點(diǎn)在x軸上的雙曲線
x2
a2
-
y2
b2
=1的漸近線方程為
y=±
b
a
x,
由題意可得,
b
a
=
1
3
,
即b=
1
3
a,c=
a2+b2
=
a2+
1
9
a2
=
10
3
a,
即有e=
c
a
=
10
3

故答案為:
10
3
點(diǎn)評(píng):本題考查雙曲線的方程和性質(zhì),考查漸近線方程和離心率的求法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角θ的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊在直線y=-
1
3
x上,且滿足
1-sin2θ
=-cosθ,則θ是(  )
A、第一象限角
B、第二象限角
C、第三象限角
D、第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x-1
x2
,g(x)=(
1
2
)
x
-m,若?x1∈[1,3],對(duì)?x2∈[-1,1]都有f(x1)≥g(x2),則實(shí)屬m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在遞增等差數(shù)列{an}(n∈N*)中,已知a3=1,a4是a3和a7的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求使Sn>0時(shí)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線x=2,與雙曲線x2-
y2
b2
=1(b>0)相交于A,B兩點(diǎn),C(0,2c),O為坐標(biāo)原點(diǎn),且四邊形OABC是平行四邊形,則該雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線
x2
16
+
y2
9
=1與曲線
x2
16-k
+
y2
9-k
=1(k<9)的( 。
A、長(zhǎng)軸長(zhǎng)相等B、短軸長(zhǎng)相等
C、離心率相等D、焦距相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
lnx+2(x>0)
2x+1(x≤0)
的零點(diǎn)個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB⊥AC,AB=3,AC=
3
,圓A是以A為圓心半徑為1的圓,圓B是以B為圓心的圓.設(shè)點(diǎn)P,Q分別為圓A,圓B上的動(dòng)點(diǎn),且
AP
=
1
2
BQ
,則
CP
CQ
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α∈(-
π
2
,0),cosα=
3
5
,則tanα等于( 。
A、-
4
3
B、-
3
4
C、
4
3
D、
3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案