【題目】如圖,在長方體中,,,點(diǎn)P內(nèi)一點(diǎn)(不含邊界),則不可能為(

A.等腰三角形B.銳角三角形C.直角三角形D.鈍角三角形

【答案】A

【解析】

連接ACBD交于點(diǎn)O,連接,,,,可證平面平面,再一一驗(yàn)證即可;

解:連接ACBD交于點(diǎn)O,連接,,.依題意得,,,又平面,,故為二面角的平面角.易知,,由勾股定理的逆定理,知,故平面平面

連接PO,若為直角,即,又,

平面,則,此時(shí)P內(nèi)的一段圓。ㄔ搱A弧所在的圓的直徑為)上,符合題意;

當(dāng)P上時(shí),為鈍角三角形;當(dāng)P無限接近BD時(shí),為銳角三角形;

為等腰三角形,,當(dāng)為等腰三角形的一個(gè)腰時(shí),,均不可能為,不符合題意.當(dāng)為等腰三角形的底邊時(shí),點(diǎn)P中點(diǎn)的連線必垂直,此時(shí),在內(nèi)部不存在這樣的點(diǎn)P

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)證明:;

2)令

①求的最大值;

②如果,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】疫情后,為了支持企業(yè)復(fù)工復(fù)產(chǎn),某地政府決定向當(dāng)?shù)仄髽I(yè)發(fā)放補(bǔ)助款,其中對(duì)納稅額在萬元至萬元(包括萬元和萬元)的小微企業(yè)做統(tǒng)一方案.方案要求同時(shí)具備下列兩個(gè)條件:①補(bǔ)助款(萬元)隨企業(yè)原納稅額(萬元)的增加而增加;②補(bǔ)助款不低于原納稅額(萬元)的.經(jīng)測算政府決定采用函數(shù)模型(其中為參數(shù))作為補(bǔ)助款發(fā)放方案.

1)判斷使用參數(shù)是否滿足條件,并說明理由;

2)求同時(shí)滿足條件①、②的參數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB//DC,AB=2CD,∠BCD=90°.

(1)求證:AD⊥PB;

(2)求點(diǎn)C到平面PAB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論上的單調(diào)性;

2)若,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了引導(dǎo)居民合理用電,國家決定實(shí)行合理的階梯電價(jià),居民用電原則上以住宅為單位(一套住宅為一戶).

階梯級(jí)別

第一階梯

第二階梯

第三階梯

月用電范圍(度)

(0,210]

(210,400]

某市隨機(jī)抽取10戶同一個(gè)月的用電情況,得到統(tǒng)計(jì)表如下:

居民用電戶編號(hào)

1

2

3

4

5

6

7

8

9

10

用電量(度)

53

86

90

124

132

200

215

225

300

410

若規(guī)定第一階梯電價(jià)每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯的部分每度0.8元,試計(jì)算A居民用電戶用電410度時(shí)應(yīng)電費(fèi)多少元?

現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數(shù)的分布列與期望;

以表中抽到的10戶作為樣本估計(jì)全市的居民用電,現(xiàn)從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:,傾斜角為銳角的直線l過點(diǎn)與單位圓相切.

1)求曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;

2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生物興趣小組對(duì)冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進(jìn)行研究,他們分別記錄了日至1125日每天的晝夜溫差與實(shí)驗(yàn)室每天100顆種子的發(fā)芽數(shù),得到以下表格

日期

1121

1122

11月23日

11月24日

11月25日

溫差()

8

9

11

10

7

發(fā)芽數(shù)()

22

26

31

27

19

該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取2組數(shù)據(jù),然后用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)求統(tǒng)計(jì)數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;

2)若選取的是1121日與1125日的兩組數(shù)據(jù),請(qǐng)根據(jù)1122 日至1124 日的數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程,若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差不超過2,則認(rèn)為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠?

附:線性回歸方程 中斜率和截距最小二乘估法計(jì)算公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會(huì)開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進(jìn)站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個(gè)問題,決定對(duì)機(jī)動(dòng)車停車施行收費(fèi)制度,收費(fèi)標(biāo)準(zhǔn)如下:4小時(shí)內(nèi)(含4小時(shí))每輛每次收費(fèi)5元;超過4小時(shí)不超過6小時(shí),每增加一小時(shí)收費(fèi)增加3元;超過6小時(shí)不超過8小時(shí),每增加一小時(shí)收費(fèi)增加4元,超過8小時(shí)至24小時(shí)內(nèi)(含24小時(shí))收費(fèi)30元;超過24小時(shí),按前述標(biāo)準(zhǔn)重新計(jì)費(fèi).上述標(biāo)準(zhǔn)不足一小時(shí)的按一小時(shí)計(jì)費(fèi).為了調(diào)查該停車場一天的收費(fèi)情況,現(xiàn)統(tǒng)計(jì)1000輛車的停留時(shí)間(假設(shè)每輛車一天內(nèi)在該停車場僅停車一次),得到下面的頻數(shù)分布表:

(小時(shí))

頻數(shù)(車次)

100

100

200

200

350

50

以車輛在停車場停留時(shí)間位于各區(qū)間的頻率代替車輛在停車場停留時(shí)間位于各區(qū)間的概率.

1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進(jìn)行進(jìn)一步深入調(diào)研,記錄并統(tǒng)計(jì)了停車時(shí)長與司機(jī)性別的列聯(lián)表:

合計(jì)

不超過6小時(shí)

30

6小時(shí)以上

20

合計(jì)

100

完成上述列聯(lián)表,并判斷能否有90%的把握認(rèn)為“停車是否超過6小時(shí)”與性別有關(guān)?

2)(i表示某輛車一天之內(nèi)(含一天)在該停車場停車一次所交費(fèi)用,求的概率分布列及期望;

ii)現(xiàn)隨機(jī)抽取該停車場內(nèi)停放的3輛車,表示3輛車中停車費(fèi)用大于的車輛數(shù),求的概率.

參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

同步練習(xí)冊(cè)答案