【題目】判斷下列說法是否正確,并說明理由.

1)如果一件事成功的概率是0.1%,那么它必然不會成功;

2)某校九年級共有學(xué)生400人,為了了解他們的視力情況,隨機調(diào)查了20名學(xué)生的視力并對所得數(shù)據(jù)進行整理,若視力在0.95~1.15范圍內(nèi)的頻率為0.3,則可估計該校九年級學(xué)生的視力在0.95~1.15范圍內(nèi)的人數(shù)為120;

3)甲袋中有12個黑球,4個白球,乙袋中有20個黑球,20個白球,分別從兩個袋子中摸出1個球,要想摸出1個黑球,由于乙袋中黑球的個數(shù)多些,故選擇乙袋成功的機會較大.

【答案】1)不正確,理由見解析(2)正確,理由見解析(3)不正確,理由見解析

【解析】

1)根據(jù)概率的定義,成功的概率為0.1%,表示成功的概率較小,但也有成功的可能性.

2)根據(jù)抽樣數(shù)據(jù),估計總體的情況,符合要求.

3)計算兩個袋中取一個黑球的概率,比較大小即可判斷.

1)不正確,因為成功的概率為0.1%表示試驗很多次,平均每1000次有1次成功,不是不可能成功,只是成功的機會較小.

2)正確,

根據(jù)樣本概率,計算總的視力在0.95~1.15范圍內(nèi)的為:.

3)不正確,因為在甲袋中(摸到黑球),

在乙袋中(摸到黑球),

因為,

所以選擇甲袋成功的機會較大,因而不正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線.軸交于兩點,是圓上不同于的一動點,所在直線分別與交于.

(1)當(dāng)時,求以為直徑的圓的方程;

2)證明:以為直徑的圓截軸所得弦長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線 .

(1)判斷直線與曲線的位置關(guān)系;

(2)若是曲線上的動點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進行視力調(diào)查。

I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。

II)若從抽取的6所學(xué)校中隨機抽取2所學(xué)校做進一步數(shù)據(jù)分析,

1)列出所有可能的抽取結(jié)果;

2)求抽取的2所學(xué)校均為小學(xué)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為提升學(xué)生的英語學(xué)習(xí)能力,進行了主題分別為“聽”、“說”、“讀”、“寫”四場競賽.規(guī)定:每場競賽的前三名得分分別為,,且,),選手的最終得分為各場得分之和.最終甲、乙、丙三人包攬了每場競賽的前三名,在四場競賽中,已知甲最終分為分,乙最終得分為分,丙最終得分為分,且乙在“聽”這場競賽中獲得了第一名,則“聽”這場競賽的第三名是(

A. B. C. D. 甲和丙都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為多面體,平面與平面垂直,點在線段上, 都是正三角形.

(1)證明:直線∥面;

(2)在線段上是否存在一點,使得二面角的余弦值是,若不存在請說明理由,若存在請求出點所在的位置。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次數(shù)學(xué)測驗共有12道選擇題,每道題共有四個選項,且其中只有一個選項是正確的,評分標(biāo)準(zhǔn)規(guī)定:每選對1道題得5分,不選或選錯得0分. 在這次數(shù)學(xué)測驗中,考生甲每道選擇題都按照規(guī)則作答,并能確定其中有9道題能選對;其余3道題無法確定正確選項,在這3道題中,恰有2道能排除兩個錯誤選項,另1題只能排除一個錯誤選項. 若考生甲做這3道題時,每道題都從不能排除的選項中隨機挑選一個選項作答,且各題作答互不影響.在本次測驗中,考生甲選擇題所得的分?jǐn)?shù)記為

1)求的概率;

2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案