12.在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥DC,BC=4,AD=DC=2,E為PA的中點(diǎn),F(xiàn)為線段BC上一點(diǎn),且CF=1.
(Ⅰ)證明:EF∥平面PCD;
(Ⅱ)證明:平面PAB⊥平面PAC.

分析 (I)取PD的中點(diǎn)M,連結(jié)EM,CM,證明四邊形EFCM是平行四邊形可得EF∥CM,故而EF∥平面PCD;
(II)取BC的中點(diǎn)N,連結(jié)AN,則可證明AB⊥AC,結(jié)合AC⊥PA即可得出AC⊥平面PAB,于是平面PAB⊥平面PAC.

解答 證明:(I)取PD的中點(diǎn)M,連結(jié)EM,CM,
∵E,M分別是PA,PD的中點(diǎn),
∴EM$\stackrel{∥}{=}$$\frac{1}{2}$AD,又CF$\stackrel{∥}{=}$$\frac{1}{2}$AD,
∴四邊形EFCM是平行四邊形,
∴EF∥CM,又EF?平面PCD,CM?平面PCD,
∴EF∥平面PCD.
(II)取BC的中點(diǎn)N,連結(jié)AN,則CN=BN=AN=2,
∴△ABN和△ACN均為等腰直角三角形,
∴∠BAN=∠CAN=45°,∴AB⊥AC,
∵PA⊥平面ABCD,AC?平面ABCD,
∴AC⊥PA,
又PA?平面PAB,AB?平面PAB,PA∩AB=A,
∴AC⊥平面PAB,又AC?平面PAC,
∴平面PAB⊥平面PAC.

點(diǎn)評(píng) 本題考查了線面平行的判定,面面垂直的判定,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.復(fù)數(shù)z滿足$({1-\sqrt{3}i})z=i$(S為虛數(shù)單位),則|z|=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}為等比數(shù)列,若a2=2,a10=8,則a6=(  )
A.±4B.-4C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給出下列四個(gè)結(jié)論:
①${∫}_{-a}^{a}$(x2+sinx)dx=18,則a=3;
②用相關(guān)指數(shù)R2來刻畫回歸效果,R2的值越大,說明模型的擬合效果越差;
③若f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=-f(x),則函數(shù)f(x)的圖象關(guān)于x=1對(duì)稱;
④已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ<-2)=0.21;
其中正確結(jié)論的序號(hào)為①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)滿足:當(dāng)x<1時(shí),f(x)=($\frac{1}{2}$)x;當(dāng)x≥1時(shí),f(x+1)=-f(x),則f(2017+log23)=( 。
A.$\frac{1}{12}$B.$\frac{1}{8}$C.$\frac{3}{8}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}為等比數(shù)列,a2=2,a3=4,則S5=31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知sinθ=-$\frac{3}{4}$且θ為第四象限角,則tan(π-θ)=( 。
A.-$\frac{3\sqrt{7}}{7}$B.$\frac{3\sqrt{7}}{7}$C.$\frac{\sqrt{7}}{3}$D.-$\frac{\sqrt{7}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的一條漸近線與直線2x+y-3=0垂直,則該雙曲線的離心率是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\frac{{{e^x}+1}}{{x({{e^x}-1})}}$(其中e為自然對(duì)數(shù)的底數(shù))的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案