設(shè)數(shù)列的前項和為,且
(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和為,求證:

(1)。2)

解析試題分析:(1)當(dāng)時,.          1分
當(dāng)時,

.                          3分
不適合上式,
                  4分
(2)證明: ∵
當(dāng)時, 
當(dāng)時,,        ①
.         ②
①-②得:


,                    8分
此式當(dāng)時也適合.
N
,
.          10分
當(dāng)時,,
.                                     12分


,即
綜上,.            14分
考點:本題主要考查數(shù)列的概念,等差數(shù)列、等比數(shù)列的基礎(chǔ)知識,“錯位相減法”,“放縮法”證明不等式。
點評:中檔題,本題綜合考查等差數(shù)列、等比數(shù)列的基礎(chǔ)知識,本解答從確定通項公式入手,明確了所研究數(shù)列的特征。“分組求和法”、“錯位相消法”、“裂項相消法”是高考常?嫉綌(shù)列求和方法。先求和,再利用“放縮法”證明不等式,是常用方法。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,對于任意,等式:恒成立,其中常數(shù)
(1)求的值;
(2)求證:數(shù)列為等比數(shù)列;
(3)如果關(guān)于的不等式的解集為,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)滿足以下兩個條件的有窮數(shù)列階“期待數(shù)列”:
;②
(1)若等比數(shù)列 ()階“期待數(shù)列”,求公比
(2)若一個等差數(shù)列既是 ()階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;
(3)記階“期待數(shù)列”的前項和為
(。┣笞C:;
(ⅱ)若存在使,試問數(shù)列能否為階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列,a1=1,點在直線上.
(1)求數(shù)列的通項公式;
(2)設(shè),求證:<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項和為,若對于任意的正整數(shù)都有,
(1)設(shè),求證:數(shù)列是等比數(shù)列,并求出的通項公式;
(2)求數(shù)列的前項和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{}滿足=1,=,(1)計算,的值;(2)歸納推測,并用數(shù)學(xué)歸納法證明你的推測.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),為正整數(shù).
(Ⅰ)求的值;
(Ⅱ)數(shù)列的通項公式為(),求數(shù)列的前項和;
(Ⅲ)設(shè)數(shù)列滿足:,,設(shè),若(Ⅱ)中的滿足:對任意不小于3的正整數(shù)n,恒成立,試求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)正項數(shù)列都是等差數(shù)列,且公差相等,(1)求的通項公式;(2)若的前三項,記數(shù)列數(shù)列的前n項和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分)
已知有窮數(shù)列共有項(整數(shù)),首項,設(shè)該數(shù)列的前項和為,且其中常數(shù)⑴求的通項公式;⑵若,數(shù)列滿足
求證:;
⑶若⑵中數(shù)列滿足不等式:,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案