已知直線x-y+m=0與圓x2+y2=4交于不同的兩點(diǎn)A,B,O是坐標(biāo)原點(diǎn).若圓周上存在一點(diǎn)C,使得△ABC為等邊三角形,則實(shí)數(shù)m的值為
 
考點(diǎn):直線與圓的位置關(guān)系,余弦定理
專題:計(jì)算題,直線與圓
分析:先由圓心角與圓周角的關(guān)系得到∠AOB=120°,再利用余弦定理得到BD,最后借助于點(diǎn)到直線的距離公式可解得m即可.
解答: 解:根據(jù)題意畫出圖形,連接OA,OB,作OD垂直于AB于D點(diǎn),
因?yàn)椤鰽BC為等邊三角形,所以∠AOB=120°,由余弦定理知:AB=2
3
,
BD=
3
,所以O(shè)D=1,
所以O(shè)(0,0)到直線AB的距離
|m|
2
=1
,解得m=±
2
,
故答案為:±
2
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,考查余弦定理,考查點(diǎn)到直線的距離公式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在下列關(guān)于點(diǎn)P,直線l、m與平面α、β的命題中,正確的是( 。
A、若m⊥α,l⊥m,則l∥α
B、若α⊥β,α∩β=m,P∈α,P∈l,且l⊥m,則l⊥β
C、若l,m是異面直線,m?α,m∥β,l?β,l∥α,則α∥β
D、若α⊥β,且l⊥β,m⊥l,則m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列3,7,13,21,31,…的一個(gè)通項(xiàng)公式是( 。
A、an=4n-1
B、an=n2+n+1
C、an=2+2n-n2
D、an=n(n2-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2-x的大致圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=loga(ax-1)(a>0,且a≠1)
(1)求f(x)的定義域;
(2)求f(x)的單調(diào)區(qū)間;
(3)求f(x)>1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為
x=-4+4t
y=m-2t
(為參數(shù)).
(Ⅰ)若直線l與圓C相切,求m的值;
(Ⅱ)若m=-1,求圓C上的點(diǎn)到直線l的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:
(Ⅰ)|x+1|<|2x+3|;
(Ⅱ)
x-2
x+3
≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

城市公交車的數(shù)量若太多則容易造成資的浪費(fèi);若太少又難以滿足乘客需求.南充市公交公司在某站臺(tái)的60名候車乘客中隨機(jī)抽取15人,將他們的候車時(shí)間作為樣本分成5組,如下表所示(單位:分鐘):)
組別候車時(shí)間人數(shù)
[0,5)2
[5,10)6
[10,15)4
[15,20)2
[20,25]1
(1)估計(jì)這60名乘客中候車時(shí)間少于10分鐘的人數(shù);
(2)若從上表第三、四組的6人中任選2人作進(jìn)一步的調(diào)查,求抽到的兩人恰好自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點(diǎn)作直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),如果x1+x2=6,那么|AB|=( 。
A、10B、9C、8D、6

查看答案和解析>>

同步練習(xí)冊(cè)答案