函數(shù)f(x)=2-x的大致圖象為( 。
A、
B、
C、
D、
考點(diǎn):指數(shù)函數(shù)的圖像變換
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)指數(shù)函數(shù)的圖象和性質(zhì)即可得到答案
解答: 解:函數(shù)f(x)=2-x=(
1
2
)x
,根據(jù)指數(shù)函數(shù)的性質(zhì)0<a<1,故該函數(shù)為減函數(shù),且過(guò)點(diǎn)(0,1),
故選:B
點(diǎn)評(píng):本題主要考查了指數(shù)函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx+lnx-kx(k>0).
(Ⅰ)若f(x)在(0,
π
2
]上單調(diào)遞增,求k的取值范圍;
(Ⅱ)設(shè)g(x)=sinx(x>0),若y=g(x)的圖象在y=f(x)的圖象上方,求k的取值范圍;
(Ⅲ)設(shè)n∈N+,證明:
1
π
(4-
1
2n-1
)<
n+1
i=1
sin(
1
2
i-1
(
3
-1)(n+1)
2
+1+
n(n+1)
2
ln2-(
1
2
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=kx+1,若f(2)=0,則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是(  )
A、函數(shù)f(x)=ax+1(a>0,且a≠1)的圖象恒過(guò)定點(diǎn)(0,1)
B、函數(shù)f(x)=x-3在其定義域上是減函數(shù)
C、函數(shù)f(x)=2 
1
x
值域?yàn)椋?,+∞)
D、函數(shù)f(x)=|log2x|在區(qū)間(1,+∞)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
2x-1,0≤x<2
x2-6x+8,x≥2

(1)畫(huà)出f(x)的圖象;        
(2)若f(m)=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a2x-2a+1.若命題“?x∈(0,1),f(x)≠0”是假命題,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線x-y+m=0與圓x2+y2=4交于不同的兩點(diǎn)A,B,O是坐標(biāo)原點(diǎn).若圓周上存在一點(diǎn)C,使得△ABC為等邊三角形,則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={(x,y)|x+y-2≤0,x≥0,y≥0},N={(x,y)|y≤
x
,y≥0},則集合M∩N中的點(diǎn)所構(gòu)成的平面區(qū)域的面積為( 。
A、
7
9
B、1
C、
3
4
D、
7
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2-2x+2y=0上的動(dòng)點(diǎn)P到直線y=
3
4
x+2的距離的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案