【題目】已知函數(shù)(a為常數(shù))與x軸有唯一的公共點(diǎn)A.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)曲線在點(diǎn)A處的切線斜率為,若存在不相等的正實數(shù),,滿足,證明:.
【答案】(Ⅰ)見解析(Ⅱ)見解析
【解析】
(Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,結(jié)合單調(diào)性求出f(x)的最小值,從而確定a的范圍;
(Ⅱ)求出a的值,不妨設(shè)x1<x2,則0<x1<1<x2,得到(x121+3lnx1)=x221+3lnx2,令p(t)=2t+3lnt-2,根據(jù)函數(shù)的單調(diào)性證明即可.
(Ⅰ)因為函數(shù)的定義域為,且,
故由題意可知曲線與x軸存在公共點(diǎn),又,則有
當(dāng)時,,函數(shù)在定義域上遞增,滿足條件;
當(dāng)時,函數(shù)在上遞減,在上遞增,
①若時,則,取,則,
故由零點(diǎn)存在定理可知,函數(shù)在上還有一個零點(diǎn),因此不符合題意;
②若,則函數(shù)的極小值為,符合題意;
③若,則由函數(shù)的單調(diào)性,有,取,有.
下面研究函數(shù)
,,因為恒成立,故函數(shù)在上遞增.故,故成立,函數(shù)在區(qū)間上存在零點(diǎn),不符合題意.
綜上所述:
當(dāng)時,函數(shù)的遞增區(qū)間為,遞減區(qū)間為;
當(dāng)時,函數(shù)的遞增區(qū)間為,無遞減區(qū)間.
(Ⅱ)容易知道函數(shù)在處的切線斜率為,得,
由(Ⅰ)可知,且函數(shù)在區(qū)間上遞增.
不妨設(shè),因為,則,
則有,整理得,
由基本不等式得,故,整理,即.
由函數(shù)在上單調(diào)遞增,所以,即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)到點(diǎn)的距離比它到直線距離小
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)作互相垂直的兩條直線,它們與(Ⅰ)中軌跡分別交于點(diǎn)及點(diǎn),且分別是線段的中點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在上是單調(diào)遞增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)若,對任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)E在橢圓上,以E為圓心的圓與x軸相切于橢圓C的右焦點(diǎn),與y軸相交于A,B兩點(diǎn),且是邊長為2的正三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知圓,設(shè)圓O上任意一點(diǎn)P處的切線交橢圓C于M、N兩點(diǎn),試判斷以為直徑的圓是否過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)坐標(biāo),并直接寫出的值;若不過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有四個關(guān)于命題的判斷,其中正確的是()
A.命題“,”是假命題
B.命題“若,則或”是真命題
C.命題“,”的否定是“,”
D.命題“在中,若,則是鈍角三角形”是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn),直線與y軸交于點(diǎn)P.且與橢圓交于A,B兩點(diǎn).A為橢圓的右頂點(diǎn),B在x軸上的射影恰為。
(1)求橢圓E的方程;
(2)M為橢圓E在第一象限部分上一點(diǎn),直線MP與橢圓交于另一點(diǎn)N,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市在進(jìn)行創(chuàng)建文明城市的活動中,為了解居民對“創(chuàng)文”的滿意程度,組織居民給活動打分(分?jǐn)?shù)為整數(shù).滿分為100分).從中隨機(jī)抽取一個容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問題:
(1)算出第三組的頻數(shù).并補(bǔ)全頻率分布直方圖;
(2)請根據(jù)頻率分布直方圖,估計樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且的解集為.
(1)解關(guān)于的不等式,;
(2)設(shè),若對于任意的、都有,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;
(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如下表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).
分?jǐn)?shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
x∶y | 1∶1 | 2∶1 | 3∶4 | 4∶5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com