A. | 2 | B. | 4 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
分析 利用向量平行即共線的條件,得到向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$+2$\overrightarrow$之間的關(guān)系,利用向量相等解答.
解答 解:因?yàn)橄蛄?\overrightarrow{a}$,$\overrightarrow$不平行,向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$+2$\overrightarrow$平行,
所以λ$\overrightarrow{a}$+$\overrightarrow$=μ($\overrightarrow{a}$+2$\overrightarrow$),
所以 $\left\{\begin{array}{l}{λ=μ}\\{1=2μ}\end{array}\right.$,解得λ=μ=$\frac{1}{2}$;
故選:C.
點(diǎn)評 本題考查了向量關(guān)系的充要條件:如果兩個(gè)非0向量$\overrightarrow{a}$,$\overrightarrow$共線,那么存在唯一的參數(shù)λ,使得$\overrightarrow{a}$=λ$\overrightarrow$.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=ln(-x)+2x+1 | B. | f(x)=-ln(-x)-2x+1 | C. | f(x)=-ln(-x)-2x-1 | D. | f(x)=-ln(-x)+2x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com