【題目】一些選手參加數(shù)學(xué)競(jìng)賽,其中有些選手互相認(rèn)識(shí),有些選手互相不認(rèn)識(shí),而任何兩個(gè)不相識(shí)的選手都恰有兩個(gè)共同的熟人.若認(rèn)識(shí),但沒(méi)有共同的熟人,求證:認(rèn)識(shí)的熟人一樣多.

【答案】見(jiàn)解析

【解析】

用點(diǎn)表示人,兩人互相認(rèn)識(shí)就在相應(yīng)兩點(diǎn)間連一條線(xiàn)段,依題意間有連線(xiàn)(如圖).

由于、沒(méi)有共同的熟人,故凡認(rèn)識(shí)的人就不認(rèn)識(shí),凡認(rèn)識(shí)的人就不認(rèn)識(shí)

現(xiàn)設(shè),…,認(rèn)識(shí),,,…,認(rèn)識(shí),由于任一不認(rèn)識(shí),而任何兩個(gè)不相識(shí)的選手都恰有兩個(gè)共同的熟人,故有且僅有一個(gè)共同的熟人

反之,每一個(gè)有且僅有一個(gè)共同的熟人

亦即每一必與某一有連線(xiàn),每一也必與某一有連線(xiàn).

現(xiàn)設(shè)認(rèn)識(shí),認(rèn)識(shí),下面證明不相同時(shí),也不相同.

若不然,重合,則、均有連線(xiàn),從而互不認(rèn)識(shí)的,共同認(rèn)識(shí)3個(gè)人,(如圖),與已知條件恰有兩個(gè)共同的熟人矛盾,可見(jiàn),

同理,,不相同時(shí),其對(duì)應(yīng)的,也不相同,又得

從而.這表明、認(rèn)識(shí)的熟人一樣多.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如表提供了某廠(chǎng)節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

1)請(qǐng)畫(huà)出表中數(shù)據(jù)的散點(diǎn)圖;

2)請(qǐng)根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線(xiàn)性回歸方程

3)根據(jù)(2)求出的線(xiàn)性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗多少?lài)崢?biāo)準(zhǔn)煤?

(附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)設(shè),若存在,使得不等式成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線(xiàn)AF的斜率為,O為坐標(biāo)原點(diǎn).

(1)E的方程;

(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線(xiàn)lE相交于P,Q兩點(diǎn).當(dāng)OPQ的面積最大時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高學(xué)生的身體素質(zhì),某校高一、高二兩個(gè)年級(jí)共名學(xué)生同時(shí)參與了我運(yùn)動(dòng),我健康,我快樂(lè)的跳繩、踢毽等系列體育健身活動(dòng).為了了解學(xué)生的運(yùn)動(dòng)狀況,采用分層抽樣的方法從高一、高二兩個(gè)年級(jí)的學(xué)生中分別抽取名和名學(xué)生進(jìn)行測(cè)試.下表是高二年級(jí)的名學(xué)生的測(cè)試數(shù)據(jù)(單位:個(gè)/分鐘):

學(xué)生編號(hào)

1

2

3

4

5

跳繩個(gè)數(shù)

179

181

168

177

183

踢毽個(gè)數(shù)

85

78

79

72

80

1)求高一、高二兩個(gè)年級(jí)各有多少人?

2)設(shè)某學(xué)生跳繩個(gè)/分鐘,踢毽個(gè)/分鐘.當(dāng),且時(shí),稱(chēng)該學(xué)生為運(yùn)動(dòng)達(dá)人”.

①?gòu)母叨昙?jí)的學(xué)生中任選一人,試估計(jì)該學(xué)生為運(yùn)動(dòng)達(dá)人的概率;

②從高二年級(jí)抽出的上述名學(xué)生中,隨機(jī)抽取人,求抽取的名學(xué)生中為span>運(yùn)動(dòng)達(dá)人的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李莊村某社區(qū)電費(fèi)收取有以下兩種方案供農(nóng)戶(hù)選擇:

方案一每戶(hù)每月收管理費(fèi)2元,月用電不超過(guò)30度,每度0.4元,超過(guò)30度時(shí),超過(guò)部分按每度0.5.

方案二不收管理費(fèi),每度0.48.

1求方案一收費(fèi)元與用電量(度)間的函數(shù)關(guān)系;

2小李家九月份按方案一交費(fèi)34元,問(wèn)小李家該月用電多少度?

3)小李家月用電量在什么范圍時(shí),選擇方案一比選擇方案二更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 ,設(shè)函數(shù),且的圖象過(guò)點(diǎn)和點(diǎn).

(Ⅰ)求的值;

(Ⅱ)將的圖象向左平移)個(gè)單位后得到函數(shù)的圖象.若的圖象上各最高點(diǎn)到點(diǎn)的距離的最小值為1,求的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】進(jìn)入冬天,大氣流動(dòng)性變差,容易形成霧握天氣,從而影響空氣質(zhì)量.某城市環(huán)保部門(mén)試圖探究車(chē)流量與空氣質(zhì)量的相關(guān)性,以確定是否對(duì)車(chē)輛實(shí)施限行.為此,環(huán)保部門(mén)采集到該城市過(guò)去一周內(nèi)某時(shí)段車(chē)流量與空氣質(zhì)量指數(shù)的數(shù)據(jù)如下表:

(1)根據(jù)表中周一到周五的數(shù)據(jù),求y關(guān)于x的線(xiàn)性回歸方程。

(2)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2,則認(rèn)為得到的線(xiàn)性回歸方程是可靠的.請(qǐng)根據(jù)周六和周日數(shù)據(jù),判定所得的線(xiàn)性回歸方程是否可靠?

注:回歸方程中斜率和截距最小二乘估計(jì)公式分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓W:的焦距與橢圓Ω:+y2=1的短軸長(zhǎng)相等,且W與Ω的長(zhǎng)軸長(zhǎng)相等,這兩個(gè)橢圓的在第一象限的交點(diǎn)為A,直線(xiàn)l經(jīng)過(guò)Ω在y軸正半軸上的頂點(diǎn)B且與直線(xiàn)OA(O為坐標(biāo)原點(diǎn))垂直,l與Ω的另一個(gè)交點(diǎn)為C,l與W交于M,N兩點(diǎn).

(1)求W的標(biāo)準(zhǔn)方程:

(2)求

查看答案和解析>>

同步練習(xí)冊(cè)答案