【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點.
(1)求證:AE⊥B1C;
(2)若G為C1C中點,求二面角C-AG-E的正切值.
【答案】(1)見解析;(2)
【解析】
(1)證明AE⊥BB1和AE⊥BC得到AE⊥面BB1C1C,進而得到證明.
(2)連接AG,設(shè)P是AC的中點,過點P作PQ⊥AG于Q,連EP,EQ,證明EP⊥平面ACC1A1得到∠PQE是二面角C-AG-E的平面角,計算得到答案.
(1)因為BB1⊥面ABC,AE面ABC,所以AE⊥BB1
由AB=AC,E為BC的中點得到AE⊥BC·
∵BC∩BB1=B∴AE⊥面BB1C1C
∴AE⊥B1C
(2)如圖所示:連接AG,設(shè)P是AC的中點,過點P作PQ⊥AG于Q,連EP,EQ,
則EP⊥AC,又∵平面ABC⊥平面ACC1A1
∴EP⊥平面ACC1A1,而PQ⊥AG∴EQ⊥AG.
∴∠PQE是二面角C-AG-E的平面角.
不妨設(shè)AB=AC=AA1=2,
則EP=1,AP=1,PQ=,得tan∠PQE==
所以二面角C-AG-E的平面角正切值是
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于函數(shù),有下列四個命題:①的值域是;②是奇函數(shù);③在上單調(diào)遞增;④方程總有四個不同的解;其中正確的是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代碼t | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量y(萬噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(Ⅱ)根據(jù)線性回歸方程預測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.(參考數(shù)據(jù):,計算結(jié)果保留小數(shù)點后兩位)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),任取,記函數(shù)在區(qū)間上的最大值為最小值為記. 則關(guān)于函數(shù)有如下結(jié)論:
①函數(shù)為偶函數(shù);
②函數(shù)的值域為;
③函數(shù)的周期為2;
④函數(shù)的單調(diào)增區(qū)間為.
其中正確的結(jié)論有____________.(填上所有正確的結(jié)論序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市在進行規(guī)劃時,準備設(shè)計一個圓形的開放式公園.為達到社會和經(jīng)濟效益雙豐收.園林公司進行如下設(shè)計,安排圓內(nèi)接四邊形作為綠化區(qū)域,其余作為市民活動區(qū)域.其中區(qū)域種植花木后出售,區(qū)域種植草皮后出售,已知草皮每平方米售價為元,花木每平方米的售價是草皮每平方米售價的三倍. 若 km , km
(1)若 km ,求綠化區(qū)域的面積;
(2)設(shè),當取何值時,園林公司的總銷售金額最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在封閉的平面區(qū)域D內(nèi)任意兩點的距離的最大值稱為平面區(qū)域D的“直徑".已知銳角三角形的三個頂點A,B,C在半徑為1的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構(gòu)成平面區(qū)域D,則平面區(qū)域D的“直徑”是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是由兩個全等的菱形和組成的空間圖形,,∠BAF=∠ECD=60°.
(1)求證:;
(2)如果二面角B-EF-D的平面角為60°,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com