【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x20的均值和方差分別為1和8,若yi=2xi+3(i=1,2,…,20),則y1 , y2 , …,y20的均值和方差分別是(
A.5,32
B.5,19
C.1,32
D.4,35

【答案】A
【解析】解:方法1:∵yi=2xi+3, ∴E(yi)=2E(xi)+E(3)=2×1+3=5,
方差D(yi)=22×D(xi)+E(3)=4×8+0=32.
方法2:由題意知yi=2xi+3,
= (x1+x2+…+x20+20×3)= (x1+x2+…+x20)+3= +3=1+3=4,
方差s2= [(2x1+3﹣(2 +3)2+(2x2+3﹣(2 +3)2+…+(2x20+3﹣(2 +3)2]
=22× [(x12+(x22+…+(x202]
=4s2=4×8=32.
故選:A.
【考點精析】利用平均數(shù)、中位數(shù)、眾數(shù)和極差、方差與標準差對題目進行判斷即可得到答案,需要熟知⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù);標準差和方差越大,數(shù)據(jù)的離散程度越大;標準差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標準差.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓O: (a>b>0)過點( ,﹣ ),A(x0 , y0)(x0y0≠0),其上頂點到直線 x+y+3=0的距離為2,過點A的直線l與x,y軸的交點分別為M、N,且 =2
(1)證明:|MN|為定值;
(2)如圖所示,若A,C關(guān)于原點對稱,B,D關(guān)于原點對稱,且 ,求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=4sinxcos(x+ )+m(x∈R,m為常數(shù)),其最大值為2. (Ⅰ)求實數(shù)m的值;
(Ⅱ)若f(α)=﹣ (﹣ <α<0),求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足:a1=1,an+1+(﹣1)nan=2n﹣1.
(1)求a2 , a4 , a6
(2)設(shè)bn=a2n , 求數(shù)列{bn}的通項公式;
(3)設(shè)Sn為數(shù)列{an}的前n項和,求S2018

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某食品廠為了檢查甲乙兩條自動包裝流水線的生產(chǎn)情況,隨機在這兩條流水線上各抽取40件產(chǎn)品作為樣本稱出它們的重量(單位:克),重量值落在(495,510]的產(chǎn)品為合格品,否則為不合格品.圖1是甲流水線樣本的頻率分布直方圖,表1是乙流水線樣本頻數(shù)分布表. 表1:(乙流水線樣本頻數(shù)分布表)

產(chǎn)品重量(克)

頻數(shù)

(490,495]

6

(495,500]

8

(500,505]

14

(505,510]

8

(510,515]

4

(Ⅰ)若以頻率作為概率,試估計從甲流水線上任取5件產(chǎn)品,求其中合格品的件數(shù)X的數(shù)學期望; (Ⅱ)從乙流水線樣本的不合格品中任意取x2+y2=2件,求其中超過合格品重量的件數(shù)l:y=kx﹣2的分布列;(Ⅲ)由以上統(tǒng)計數(shù)據(jù)完成下面 列聯(lián)表,并回答有多大的把握認為“產(chǎn)品的包裝質(zhì)量與兩條資動包裝流水線的選擇有關(guān)”.

甲流水線

乙流水線

合計

合格品

a=

b=

不合格品

c=

d=

合計

n=

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:下面的臨界值表供參考:
(參考公式: ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x2+ax+1(a∈R). (Ⅰ)當a= 時,求不等式f(x)<3的解集;
(Ⅱ)當0<x<2時,不等式f(x)>0恒成立,求實數(shù)a的取值范圍;
(Ⅲ)求關(guān)于x的不等式f(x)﹣ a2﹣1>0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】二手車經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如下的對應(yīng)數(shù)據(jù):

使用年數(shù)

2

4

6

8

10

售價

16

13

9.5

7

4.5

參考公式: ,
(1)若這兩個變量呈線性相關(guān)關(guān)系,試求y關(guān)于x的回歸直線方程 ;
(2)已知小王只收購使用年限不超過10年的二手車,且每輛該型號汽車的收購價格為ω=0.03x2﹣1.81x+16.2萬元,根據(jù)(1)中所求的回歸方程,預(yù)測x為何值時,小王銷售一輛該型號汽車所獲得的利潤L(x)最大? (銷售一輛該型號汽車的利潤=銷售價格﹣收購價格)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x)= ,有下列5個結(jié)論: ①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函數(shù)y=f(x)在區(qū)間[4,5]上單調(diào)遞增;
③f(x)=2kf(x+2k)(k∈N+),對一切x∈[0,+∞)恒成立;
④函數(shù)y=f(x)﹣ln(x﹣1)有3個零點;
⑤若關(guān)于x的方程f(x)=m(m<0)有且只有兩個不同實根x1 , x2 , 則x1+x2=3.
則其中所有正確結(jié)論的序號是 . (請寫出全部正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣(a+1)x+b.
(1)若f(x)<0的解集為(﹣1,3),求a,b的值;
(2)當a=1時,若對任意x∈R,f(x)≥0恒成立,求實數(shù)b的取值范圍;
(3)當b=a時,解關(guān)于x的不等式f(x)<0(結(jié)果用a表示).

查看答案和解析>>

同步練習冊答案