【題目】二手車經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)x(0<x≤10)與銷售價(jià)格y(單位:萬元/輛)進(jìn)行整理,得到如下的對應(yīng)數(shù)據(jù):

使用年數(shù)

2

4

6

8

10

售價(jià)

16

13

9.5

7

4.5

參考公式:
(1)若這兩個變量呈線性相關(guān)關(guān)系,試求y關(guān)于x的回歸直線方程
(2)已知小王只收購使用年限不超過10年的二手車,且每輛該型號汽車的收購價(jià)格為ω=0.03x2﹣1.81x+16.2萬元,根據(jù)(1)中所求的回歸方程,預(yù)測x為何值時(shí),小王銷售一輛該型號汽車所獲得的利潤L(x)最大? (銷售一輛該型號汽車的利潤=銷售價(jià)格﹣收購價(jià)格)

【答案】
(1)解:由已知: ,

,

所求線性回歸直線方程為


(2)解:L(x)=y﹣ω=﹣1.45x+18.7﹣(0.03x2﹣1.81x+16.2)

=﹣0.03x2+0.36x+2.5=﹣0.03(x﹣6)2+3.58(0<x≤10)

∵0<x≤10

∴當(dāng)x=6時(shí),L(x)max=3.58(萬元)

所以預(yù)測x=6時(shí),銷售一輛該型號汽車所獲得的利潤L(x)最大


【解析】(1)計(jì)算平均數(shù),分別求出 , 的值,求出回歸方程即可;(2)求出方程L(x),根據(jù)二次函數(shù)的性質(zhì)求出函數(shù)的最大值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知正方體ABCDA1B1C1D1的棱長為a , 過點(diǎn)B1B1EBD1于點(diǎn)E , 求A、E兩點(diǎn)之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓長軸端點(diǎn)為A,B,O為橢圓中心,F(xiàn)為橢圓的右焦點(diǎn),且
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的上頂點(diǎn)為M,直線l交橢圓于P,Q兩點(diǎn),問:是否存在直線l,使點(diǎn)F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x20的均值和方差分別為1和8,若yi=2xi+3(i=1,2,…,20),則y1 , y2 , …,y20的均值和方差分別是(
A.5,32
B.5,19
C.1,32
D.4,35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù)m≠0,n≥2且n∈N,二項(xiàng)式(1+mx)n的展開式中,只有第6項(xiàng)的二項(xiàng)式系數(shù)最大,第三項(xiàng)系數(shù)是第二項(xiàng)系數(shù)的9倍.
(1)求m、n的值;
(2)若記(1+mx)n=a0+a1(x+8)+a2(x+8)2+…+an(x+8)n , 求a0﹣a1+a2﹣a3+…+(﹣1)nan除以6的余數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 點(diǎn)(an , Sn)(n∈N*)都在函數(shù)f(x)= 的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an3n , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為得到函數(shù)y=sin(2x﹣ )的圖象,只需將函數(shù)y=sin2x的圖象(
A.向左平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向右平移 個長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,f(x)=aln(x﹣1)+x,f′(2)=2
(1)求a的值,并求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程y=g(x);
(2)設(shè)h(x)=mf′(x)+g(x)+1,若對任意的x∈[2,4],h(x)>0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且bcosA= asinB.
(1)求角A的大;
(2)若a=1,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案