【題目】已知圓與圓 的公共點的軌跡為曲線,且曲線軸的正半軸相交于點.若曲線上相異兩點滿足直線的斜率之積為

1)求的方程;

2)證明直線恒過定點,并求定點的坐標.

【答案】(1;(2)證明見解析,

【解析】試題分析:(1)確定,可得曲線是長軸長,焦距的橢圓,即可求解橢圓的方程;(2)分類討論,設出直線的方程,代入橢圓的方程,利用韋達定理,結(jié)合直線的斜率之積為,即可證直線恒過定點,并求出定點的坐標.

試題解析:(1)設,的公共點為,

由已知得,,

,因此曲線是長軸長,焦距的橢圓,

所以曲線;

2)由曲線的方程得,上頂點,記,

若直線的斜率不存在,則直線的方程為,故,且,

因此,與已知不符,

因此直線AB的斜率存在,

設直線,代入橢圓

因為直線與曲線有公共點,所以方程有兩個非零不等實根,

,

,

,得

所以

化簡得: ,故,結(jié)合,

即直線恒過定點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)的最小值為1,f(0)f(2)3.

(1)f(x)的解析式;

(2)f(x)在區(qū)間[2aa1]上不單調(diào),求實數(shù)a的取值范圍;

(3)在區(qū)間[1,1],yf(x)的圖象恒在y2x2m1的圖象上方試確定實數(shù)m的范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學舉辦安全法規(guī)知識競賽,從參賽的高一、高二學生中各抽出100人的成績作為樣本,對高一年級的100名學生的成績進行統(tǒng)計,并按 , , 分組,得到成績分布的頻率分布直方圖(如圖)。

(1)若規(guī)定60分以上(包括60分)為合格,計算高一年級這次競賽的合格率;

(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此,估計高一年級這次知識競賽的學生的平均成績;

(3)若高二年級這次競賽的合格率為,由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并問是否有的把握認為“這次知識競賽的成績與年級有關”。

高一

高二

合計

合格人數(shù)

不合格人數(shù)

合計

附:參考數(shù)據(jù)與公式

高一

高二

合計

合格人數(shù)

a

b

a+b

不合格人數(shù)

c

d

c+d

合計

a+c

b+d

n

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極點, 軸的正半軸為極軸,并在兩種坐標系中取相同的長度單位,點的極坐標為,為圓心4為半徑;又直線的極坐標方程為

(Ⅰ)求直線和圓的普通方程;

試判定直線和圓的位置關系.若相交,則求直線被圓截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,

(Ⅰ)求的值域 ;

(Ⅱ)若時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在的展開式中,第5項的系數(shù)與第3項的系數(shù)之比是563

1)求展開式中的所有有理項;

2)求展開式中系數(shù)絕對值最大的項.

3)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)3ax22bxc,abc0,f(0)>0f(1)>0,證明a>0,并利用二分法證明方程f(x)0在區(qū)間[0,1]內(nèi)有兩個實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某志愿者到某山區(qū)小學支教,為了解留守兒童的幸福感,該志愿者對某班40名學生進行了一次幸福指數(shù)的調(diào)查問卷,并用莖葉圖表示如下(注:圖中幸福指數(shù)低于70,說明孩子幸福感弱;幸福指數(shù)不低于70,說明孩子幸福感強).

(Ⅰ)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷能否有的把握認為孩子的幸福感強與是否是留守兒童有關?

(Ⅱ)從15個留守兒童中按幸福感強弱進行分層抽樣,共抽取5人,又在這5人中隨機抽取2人進行家訪,求這2個學生中恰有一人幸福感強的概率.

參考公式: ; 附表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若存在,使得,試求的取值范圍.

查看答案和解析>>

同步練習冊答案