【題目】圖1,在中,,,E為中點(diǎn).以為折痕將折起,使點(diǎn)C到達(dá)點(diǎn)D的位置,且為直二面角,F是線段上靠近A的三等分點(diǎn),連結(jié),,,如圖2.
(1)證明:;
(2)求直線與平面所成角的正弦值.
【答案】(1)見解析(2)
【解析】
(1)取中點(diǎn)為M,連結(jié),可得到平面,所以.計(jì)算,,根據(jù)勾股定理得到,故可證平面,從而得到.
(2)過E作,以E為坐標(biāo)原點(diǎn),以,,的方向分別為x軸,y軸,z軸的正方向,建立空間直角坐標(biāo)系,計(jì)算平面的法向量和直線的方向向量,代入公式計(jì)算即可.
(1)設(shè)中點(diǎn)為M,連結(jié).
因?yàn)?/span>E是中點(diǎn),所以,又因?yàn)?/span>,所以.
因?yàn)?/span>為直二面角,即平面平面,
又因?yàn)槠矫?/span>平面,且平面,
所以平面.
因?yàn)?/span>平面,所以.
在中,,,,
所以,且.
因?yàn)?/span>F是上靠近A的三等分點(diǎn),所以,.
在中,根據(jù)余弦定理,,
即,.
在中,,
所以,所以.
又因?yàn)?/span>,所以平面.
因?yàn)?/span>平面,所以.
(2)如圖,過E作,則平面.
以E為坐標(biāo)原點(diǎn),以,,的方向分別為x軸,y軸,z軸的正方向,建立空間直角坐標(biāo)系
則,,,,.
故,,
,,
那么.
設(shè)平面的一個(gè)法向量為.
則,即,
取,得,,此時(shí).
設(shè)直線與平面所成的角為,
則,
即直線與平面所成的角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知離心率為的橢圓的左頂點(diǎn)為,左焦點(diǎn)為,及點(diǎn),且、、成等比數(shù)列.
(1)求橢圓的方程;
(2)斜率不為的動(dòng)直線過點(diǎn)且與橢圓相交于、兩點(diǎn),記,線段上的點(diǎn)滿足,試求(為坐標(biāo)原點(diǎn))面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”,國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明如圖所示的“勾股圓方圖”中,四個(gè)相同的直角三角形與中間的小正方形拼成一個(gè)大正方形若直角三角形中較小的銳角,現(xiàn)在向該大止方形區(qū)域內(nèi)隨機(jī)地投擲一枚飛鏢,則飛鏢落在陰影部分的概率是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一臺(tái)儀器每啟動(dòng)一次都隨機(jī)地出現(xiàn)一個(gè)位的二進(jìn)制數(shù),其中的各位數(shù)字中,出現(xiàn)的概率為,出現(xiàn)的概率為.若啟動(dòng)一次出現(xiàn)的數(shù)字為,則稱這次試驗(yàn)成功.若成功一次得分,失敗一次得分,則次這樣的重復(fù)試驗(yàn)的總得分的數(shù)學(xué)期望和方差分別為( )
A.,B.,C.,D.,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形與等邊所在平面互相垂直,,,,分別是線段,的中點(diǎn).
(1)求證:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為平行四邊形,且,點(diǎn)E,F為平面外兩點(diǎn),且,.
(1)證明:;
(2)若,求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱柱中,底面是正方形,且, .
(1)求證: ;
(2)若動(dòng)點(diǎn)在棱上,試確定點(diǎn)的位置,使得直線與平面所成角的正弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】祖暅原理指出:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等,例如在計(jì)算球的體積時(shí),構(gòu)造一個(gè)底面半徑和高都與球的半徑相等的圓柱,與半球(如圖①)放置在同一平面上,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐后得到一新幾何體(如圖②),用任何一個(gè)平行于底面的平面去截它們時(shí),可證得所截得的兩個(gè)截面面積相等,由此可證明新幾何體與半球體積相等.現(xiàn)將橢圓所圍成的平面圖形繞y軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體,類比上述方法,運(yùn)用祖暅原理可求得其體積等于( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com