8.設(shè)a,b,c分別是△ABC三個(gè)內(nèi)角∠A,∠B,∠C的對(duì)邊,若向量$\overrightarrow m=({1-cos(A+B),cos\frac{A-B}{2}})$,$\overrightarrow n=({\frac{5}{8},cos\frac{A-B}{2}})$,且$\overrightarrow m•\overrightarrow n=\frac{9}{8}$.
(1)求tanA•tanB的值;
(2)求$\frac{{2{S_{△ABC}}}}{{{a^2}+{b^2}-{c^2}}}$的最大值.

分析 (1)利用兩個(gè)向量的數(shù)量積公式、兩角和差的三角公式,求得tanA•tanB的值.
(2)利用誘導(dǎo)公式、余弦定理、基本不等式求得tan(A+B)的最小值,可得$\frac{{2{S_{△ABC}}}}{{{a^2}+{b^2}-{c^2}}}$=$\frac{1}{2}$tanC的最大值.

解答 解:(1)由$\overrightarrow m•\overrightarrow n=\frac{9}{8}$得,$\frac{5}{8}[{1-cos({A+B})}]+{cos^2}({\frac{A-B}{2}})=\frac{9}{8}$,
即4cos(A-B)=5cos(A+B),解得,$tanA•tanB=\frac{1}{9}$.
(2)因?yàn)?\frac{{2{S_{△ABC}}}}{{{a^2}+{b^2}-{c^2}}}$=$\frac{absinC}{2abcosC}=\frac{1}{2}tanC$,
又$tan({A+B})=\frac{tanA+tanB}{1-tanAtanB}$=$\frac{9}{8}({tanA+tanB})$$≥\frac{9}{8}×2\sqrt{tanA•tanB}=\frac{3}{4}$,
所以,tan(A+B)有最小值$\frac{3}{4}$,當(dāng)且僅當(dāng)$tanA=tanB=\frac{1}{3}$時(shí),取得最小值.
又tanC=-tan(A+B),則tanC有最大值$-\frac{3}{4}$,故$\frac{{2{S_{△ABC}}}}{{{a^2}+{b^2}-{c^2}}}$的最大值為$-\frac{3}{8}$.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積公式、兩角和差的三角公式,誘導(dǎo)公式、余弦定理、基本不等式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=$\frac{lnx}{x}$(0<x<10)(  )
A.在(0,10)上是增函數(shù)
B.在(0,10)上是減函數(shù)
C.在(0,e)上是增函數(shù),在(e,10)上是減函數(shù)
D.在(0,e)上是減函數(shù),在(e,10)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體的體積是(  )
A.10B.15C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)z=1+i(i是虛數(shù)單位),O為坐標(biāo)原點(diǎn),若復(fù)數(shù)$\frac{2}{z}+{z^2}$在復(fù)平面內(nèi)對(duì)應(yīng)的向量為$\overrightarrow{OZ}$,則向量$\overrightarrow{OZ}$的模是( 。
A.1B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,M是BC的中點(diǎn),BM=2,AM=AB-AC,則△ABC的面積的最大值為( 。
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$3\sqrt{2}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={a1,a2,…,an},ai∈R,i=1,2,…,n,并且n≥2. 定義$T(A)=\sum_{1≤i<j≤n}{|{a_j}-{a_i}}|$(例如:$\sum_{1≤i<j≤3}{|{a_j}-{a_i}|}=|{a_2}-{a_1}|+|{a_3}-{a_1}|+|{a_3}-{a_2}|$).
(Ⅰ)若A={1,2,3,4,5,6,7,8,9,10},M={1,2,3,4,5},集合A的子集N滿足:N≠M(fèi),且T(M)=T(N),求出一個(gè)符合條件的N;
(Ⅱ)對(duì)于任意給定的常數(shù)C以及給定的集合A={a1,a2,…,an},求證:存在集合B={b1,b2,…,bn},使得T(B)=T(A),且$\sum_{i=1}^n{b_i}=C$.
(Ⅲ)已知集合A={a1,a2,…,a2m}滿足:ai<ai+1,i=1,2,…,2m-1,m≥2,a1=a,a2m=b,其中a,b∈R為給定的常數(shù),求T(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.98B.99C.100D.101

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩焦點(diǎn)分別為雙曲線${C_2}:\frac{x^2}{2}-{y^2}=1$的頂點(diǎn),直線$x+\sqrt{2}y=0$與橢圓C1交于A,B兩點(diǎn),且點(diǎn)A的坐標(biāo)為$(-\sqrt{2},1)$,點(diǎn)P是橢圓C1上的任意一點(diǎn),點(diǎn)Q滿足$\overrightarrow{AQ}•\overrightarrow{AP}=0$,$\overrightarrow{BQ}•\overrightarrow{BP}=0$.
(1)求橢圓C1的方程;
(2)求點(diǎn)Q的軌跡方程;
(3)當(dāng)A,B,Q三點(diǎn)不共線時(shí),求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.直線$\left\{\begin{array}{l}{x=t-1}\\{y=2-t}\end{array}\right.$(t為參數(shù))與曲線$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù))的交點(diǎn)個(gè)數(shù)是2.

查看答案和解析>>

同步練習(xí)冊(cè)答案