【題目】已知函數(shù)fx)=sin()的圖象與函數(shù)gx)的圖象關于x=1對稱,則函數(shù)gx)在(﹣6,﹣4)上( 。

A. 單調遞增 B. 單調遞減 C. 先增后減 D. 先減后增

【答案】B

【解析】

先求出gx)的解析式,再利用余弦函數(shù)的單調性,判斷它在(﹣6,﹣4)上的單調性,從而得出結論.

解:∵函數(shù)fx)=sin()的圖象與函數(shù)gx)的圖象關于x=1對稱,

gx)的圖象上任意取一點Ax,y),則點A關于直線x=1對稱點B(2﹣x,y)在fx)的圖象上,

y=sin[(2﹣x)﹣]=sin(-x)=﹣sin(x),

gx)=﹣sin(x)=cos(+x)=cos(x+).

x(﹣6,﹣4),x+(﹣2π+,﹣),gx)單調遞減,

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

1)若不等式的解集是,求此時的解析式;

2)在(1)的條件下,設函數(shù),若在區(qū)間上是單調遞增函數(shù),求實數(shù)的取值范圍;

3)是否存在實數(shù)使得函數(shù)上的最大值是?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正項數(shù)列的前項和為,且.

)試求數(shù)列的通項公式;

)設,求的前項和為.

)在()的條件下,若對一切恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0)的最小正周期為,則( 。

A. 函數(shù)f(x)的一個零點為

B. 函數(shù)fx)的圖象關于直線x對稱

C. 函數(shù)fx)圖象上的所有點向左平移個單位長度后,所得的圖象關于y軸對稱

D. 函數(shù)fx)在(0,)上單調遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=mx3+x﹣sinx(mR).

1)當m=0時,(i)求y=f(x)在(,f))處的切線方程;

ii)證明:fx)<ex;

2)當x≥0時,函數(shù)fx)單調遞減,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線C1的參數(shù)方程為 (θ為參數(shù)),將曲線C1上所有點的橫坐標伸長為原來的2倍,縱坐標伸長為原來的倍,得到曲線C2.以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(cosθ-2sinθ)=6.

(1)求曲線C2和直線l的普通方程.

(2)P為曲線C2上任意一點,求點P到直線l的距離的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C過點A(﹣1,),B),F為橢圓C的左焦點.

Ⅰ)求橢圓C的標準方程;

Ⅱ)若點B為直線l1x+y+2=0與直線l2:2xy+4=0的交點,過點B的直線1與橢圓C交于D,E兩點,求DEF面積的最大值,以及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:

①函數(shù)的值域是,則函數(shù)的值域為

②把函數(shù)圖像上的每一個點的橫坐標伸長到原來的4倍,然后再向右平移個單位得到的函數(shù)解析式為;

③已知,則與共線的單位向量為;

④一條曲線和直線的公共點個數(shù)是m,則m的值不可能是1.

其中正確的有___________(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果直線a平行于平面,則(

A.平面內(nèi)有且只有一直線與a平行

B.平面內(nèi)有無數(shù)條直線與a平行

C.平面內(nèi)不存在與a平行的直線

D.平面內(nèi)的任意直線與直線a都平行

查看答案和解析>>

同步練習冊答案