如圖,已知平面是正三角形,,且FCD的中點.

(Ⅰ)求證:平面;      

(Ⅱ)求證:平面平面

 

 

 

 

 

【答案】

 (Ⅰ)取中點,連接,因為的中點,所以

,又,所以,且=,

所以四邊形為平行四邊形,所以.又因為平面平面,所以平面.…………(7分)

(Ⅱ)因為為正三角形,所以

因為平面,,所以平面,

平面,所以.又,

所以平面.又,所以平面

又因為平面,所以平面平面.…………(14分)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正三棱柱ABC-A1B1C1的底面邊長是2,D是側(cè)棱CC1的中點,平面ABD和平面A1B1C的交線為MN.
(Ⅰ)試證明AB∥MN;
(Ⅱ)若直線AD與側(cè)面BB1C1C所成的角為45°,試求二面角A-BD-C的大�。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正三棱柱ABC-A1B1C1的底面邊長是2,D是側(cè)棱CC1的中點,直線AD與側(cè)面BB1C1C所成的角為45°.
(1)求此正三棱柱的側(cè)棱長;
(2)求二面角A-BD-C的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是正方形,DE⊥平面ABCD,BF⊥平面ABCD,且AB=FB=2DE.
(Ⅰ)求證:平面AEC⊥平面AFC;
(Ⅱ)求直線EC與平面BCF所成的角;
(Ⅲ)問在EF上是否存在一點M,使三棱錐M-ACF是正三棱錐?若存在,試確定M點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省贛榆高級中學(xué)2007-2008學(xué)年度高三第三次階段考試數(shù)學(xué)試題(理) 題型:044

如圖,已知ABCD是正方形,DE⊥平面ABCDBF⊥平面ABCD,且ABFB=2DE

(Ⅰ)求證:平面AEC⊥平面AFC;

(Ⅱ)求直線EC與平面BCF所成的角;

(Ⅲ)問在EF上是否存在一點M,使三棱錐M-ACF是正三棱錐?

若存在,試確定M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年江蘇省揚州市高郵中學(xué)高三4月模擬數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知ABCD是正方形,DE⊥平面ABCD,BF⊥平面ABCD,且AB=FB=2DE.
(Ⅰ)求證:平面AEC⊥平面AFC;
(Ⅱ)求直線EC與平面BCF所成的角;
(Ⅲ)問在EF上是否存在一點M,使三棱錐M-ACF是正三棱錐?若存在,試確定M點的位置;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案