【題目】一個(gè)袋子中有5個(gè)大小相同的球,其中3個(gè)白球與2個(gè)黑球,現(xiàn)從袋中任意取出一個(gè)球,取出后不放回,然后再?gòu)拇腥我馊〕鲆粋(gè)球,則第一次為白球、第二次為黑球的概率為( )
A. B. C. D.
【答案】B
【解析】設(shè)3個(gè)白球分別為a1,a2,a3,2個(gè)黑球分別為b1,b2,則先后從中取出2個(gè)球的所有可能結(jié)果為(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2),(a2,a1),(a3,a1),(b1,a1),(b2,a1),(a3,a2),(b1,a2),(b2,a2),(b1,a3),(b2,a3),(b2,b1),共20種.其中滿足第一次為白球、第二次為黑球的有(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),共6種,故所求概率為=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】樹(shù)立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來(lái)越深入人心,已形成了全民自覺(jué)參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,大量的統(tǒng)計(jì)數(shù)據(jù)表明,參與調(diào)查者中關(guān)注此問(wèn)題的約占80%.現(xiàn)從參與調(diào)查的人群中隨機(jī)選出人,并將這人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示:
(1)求的值;
(2)求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(3)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取人,再?gòu)倪@人中隨機(jī)抽取人進(jìn)行問(wèn)卷調(diào)查,求第2組中抽到人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型商場(chǎng)的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計(jì)數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量(百臺(tái)) | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場(chǎng)空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)6月份該商場(chǎng)空調(diào)的銷售量;
(2)若該商場(chǎng)的營(yíng)銷部對(duì)空調(diào)進(jìn)行新一輪促銷,對(duì)7月到12月有購(gòu)買空調(diào)意愿的顧客進(jìn)行問(wèn)卷調(diào)查.假設(shè)該地?cái)M購(gòu)買空調(diào)的消費(fèi)群體十分龐大,經(jīng)過(guò)營(yíng)銷部調(diào)研機(jī)構(gòu)對(duì)其中的500名顧客進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:
有購(gòu)買意愿對(duì)應(yīng)的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 60 | 80 | 120 | 130 | 80 | 30 |
現(xiàn)采用分層抽樣的方法從購(gòu)買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購(gòu)買意愿的月份是12月的概率.
參考公式與數(shù)據(jù):線性回歸方程,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)求C1的極坐標(biāo)方程與C2的直角坐標(biāo)方程;
(2)已知射線與C1交于O,P兩點(diǎn),與C2交于O,Q兩點(diǎn),且Q為OP的中點(diǎn),求α.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)的圖像向左平移個(gè)單位,再將所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,得到函數(shù)的圖像則下面對(duì)函數(shù)的敘述不正確的是( )
A.函數(shù)的周期
B.函數(shù)的一個(gè)對(duì)稱中心
C.函數(shù)在區(qū)間內(nèi)單調(diào)遞增
D.當(dāng),時(shí),函數(shù)有最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)已知函數(shù),其中為正實(shí)數(shù).
(1)若函數(shù)在處的切線斜率為2,求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)有兩個(gè)極值點(diǎn),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x).
(1)當(dāng)a≤e時(shí),求證:當(dāng)x=1時(shí)函數(shù)f(x)取得極小值:
(2)若函數(shù)f(x)有4個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)整數(shù)數(shù)列{an}共有2n()項(xiàng),滿足,,且().
(1)當(dāng)時(shí),寫出滿足條件的數(shù)列的個(gè)數(shù);
(2)當(dāng)時(shí),求滿足條件的數(shù)列的個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com