若過點的直線與曲線相切,則直線的方程為   ▲  .

 

【答案】

 .

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知圓F1:(x+1)2+y2=16,定點F2(1,0),動圓過點F2,且與圓F1相內切.
(1)求點M的軌跡C的方程;
(2)若過原點的直線l與(1)中的曲線C交于A,B兩點,且△ABF1的面積為
3
2
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:x=m(m<-2)與x軸交于A點,動圓M與直線l相切,并且和圓O:x2+y2=4相外切.
(1)求動圓圓心M的軌跡C的方程.
(2)若過原點且傾斜角為
π3
的直線與曲線C交于M、N兩點,問是否存在以MN為直徑的圓過點A?若存在,求出實數(shù)m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分) 設不等式組 表示的平面區(qū)域為,區(qū)域內的動點到直線和直線的距離之積為2, 記點的軌跡為曲線. 是否存在過點的直線l, 使之與曲線交于相異兩點、,且以線段為直徑的圓與y軸相切?若存在,求出直線l的斜率;若不存在, 說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:x=m(m<-2)與x軸交于A點,動圓M與直線l相切,并且與圓O:x2+y2=4相外切,

(1)求動圓的圓心M的軌跡C的方程;

(2)若過原點且傾斜角為的直線與曲線C交于M、N兩點,問是否存在以MN為直徑的圓經(jīng)過點A?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓,定點.動圓M過點F2,且與圓F1相內切.

(1)求點M的軌跡C的方程;

(2)若過原點的直線l與(1)中的曲線C交于A,B兩點,且△ABF1的面積為,求直線l的方程.

查看答案和解析>>

同步練習冊答案