【題目】是偶函數(shù),

(1) 求的值;

(2)當(dāng)時(shí),設(shè),若函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(1);(2).

【解析】

(1)根據(jù)為偶函數(shù),有可求出的值.
(2)函數(shù)的圖象有且只有一個(gè)公共點(diǎn),即有且只有一個(gè)解且滿足,然后換元轉(zhuǎn)化為方程有且只有一個(gè)實(shí)根,根據(jù)二次方程根的分布求解.

解:(1)因?yàn)?/span>為偶函數(shù).

所以,即.

.

.

(2) 由已知,方程有且只有一個(gè)解.

有且只有一個(gè)解,且滿足.

整理得.

,則方程有且只有一個(gè)實(shí)根.

當(dāng)時(shí),,不滿足題意,舍去.

當(dāng)時(shí),設(shè)方程對(duì)應(yīng)的二次函數(shù)為.

拋物線開口向上,對(duì)稱軸,且.

只需,則方程只有一個(gè)大于2 的根.

,即時(shí)滿足題意.

當(dāng)時(shí),拋物線開口向下,對(duì)稱軸,且.

此時(shí)方程無(wú)大于2 的實(shí)根.

綜上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的左、右焦點(diǎn)為,離心率為,已知過軸上一點(diǎn)作一條直線,交橢圓于兩點(diǎn),且的周長(zhǎng)最大值為8.

(1)求橢圓方程;

(2)以點(diǎn)為圓心,半徑為的圓的方程為.的中點(diǎn)作圓的切線,為切點(diǎn),連接,證明:當(dāng)取最大值時(shí),點(diǎn)在短軸上(不包括短軸端點(diǎn)及原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究機(jī)構(gòu)為了了解各年齡層對(duì)高考改革方案的關(guān)注程度,隨機(jī)選取了200名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,).

(1)求選取的市民年齡在內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再?gòu)闹羞x取2人在座談會(huì)中作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子中裝有標(biāo)號(hào)為1,2,3,4,55張標(biāo)簽,隨機(jī)地依次選取兩張標(biāo)簽,根據(jù)下列條件求兩張標(biāo)簽上的數(shù)字為相等整數(shù)的概率;

1)標(biāo)簽的選取是不放回的;

2)標(biāo)簽的選取是有放回的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某班級(jí)50名學(xué)生訂閱數(shù)學(xué)、語(yǔ)文、英語(yǔ)學(xué)習(xí)資料的情況,其中A表示訂閱數(shù)學(xué)學(xué)習(xí)資料的學(xué)生,B表示訂閱語(yǔ)文學(xué)習(xí)資料的學(xué)生,C表示訂閱英語(yǔ)學(xué)習(xí)資料的學(xué)生

1)從這個(gè)班任意選擇一名學(xué)生,用自然語(yǔ)言描述1,4,58各區(qū)域所代表的事件;

2)用A,BC表示下列事件:

①恰好訂閱一種學(xué)習(xí)資料;

②沒有訂閱任何學(xué)習(xí)資料.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)某種型號(hào)的電視機(jī)零配件,為了預(yù)測(cè)今年月份該型號(hào)電視機(jī)零配件的市場(chǎng)需求量,以合理安排生產(chǎn),工廠對(duì)本年度月份至月份該型號(hào)電視機(jī)零配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)(單位:元)和銷售量(單位:千件)之間的組數(shù)據(jù)如下表所示:

月份

銷售單價(jià)(元)

銷售量(千件)

(1)根據(jù)1至月份的數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到);

(2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號(hào)電視機(jī)零配件的生產(chǎn)成本為每件元,那么工廠如何制定月份的銷售單價(jià),才能使該月利潤(rùn)達(dá)到最大(計(jì)算結(jié)果精確到)?

參考公式:回歸直線方程,其中.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的焦點(diǎn)為,拋物線兩點(diǎn),在拋物線的準(zhǔn)線上的射影分別為.

(1)如圖,若點(diǎn)在線段上,過的平行線與拋物線準(zhǔn)線交于,證明:的中點(diǎn);

(2)如圖,若的面積是的面積的兩倍,求中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F為拋物線C:x2=2py (p>0) 的焦點(diǎn),點(diǎn)A(m,3)在拋物線C上,且|AF|=5,若點(diǎn)P是拋物線C上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P到直線的距離為,設(shè)點(diǎn)P到直線的距離為

(1)求拋物線C的方程;

(2) 求的最小值;

(3)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),記在區(qū)間的最大值為,最小值為,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案