2.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),且在區(qū)間[0,2]上是增函數(shù),則( 。
A.f(-25)<f(10)<f(80)B.f(80)<f(10)<f(-25)C.f(10)<f(80)<f(-25)D.f(-25)<f(80)<f(10)

分析 利用函數(shù)的周期性以及單調(diào)性,判斷三個(gè)數(shù)值的大小即可.

解答 解:定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),
可得f(x+4)=-f(x+2)=f(x),函數(shù)的周期為4.
f(80)=f(0);f(10)=f(2);f(-25)=f(-1).
函數(shù)在區(qū)間[0,2]上是增函數(shù),
可得:f(-25)<f(80)<f(10).
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性以及函數(shù)的周期性的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.正月十六登高是“中國(guó)石刻藝術(shù)之鄉(xiāng)”、“中國(guó)民間文化藝術(shù)之鄉(xiāng)”四川省巴中市沿襲千年的獨(dú)特民俗.登高節(jié)前夕,李大伯在家門前的樹(shù)上掛了兩串喜慶彩燈,這兩串彩燈的第一次閃亮相互獨(dú)立,且都在通電后的4秒內(nèi)任一時(shí)刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮.那么這兩串彩燈同時(shí)通電后,它們第一次閃亮的時(shí)刻相差不超過(guò)2秒的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.解關(guān)于x的不等式ax2-(3a+1)x+3>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+4,x≥-1}\\{-x+1,x<-1}\end{array}\right.$,求不等式f(x)<4的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知向量$\overrightarrow a$與向量$\overrightarrow b$的夾角為$\frac{2π}{3}$,且|${\overrightarrow a}$|=|${\overrightarrow b}$|=2,又向量$\overrightarrow c$=x$\overrightarrow a$+y$\overrightarrow b$(x∈R且x≠0,y∈R),則|$\frac{|x|}{|\overrightarrow{c}|}$的最大值為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)復(fù)數(shù)z滿足(1-i)z=2i,則z的虛部為(  )
A.-1B.1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=1-$\frac{a}{x}$-lnx(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在點(diǎn)($\frac{1}{2}$,f($\frac{1}{2}$))處的切線方程;
(Ⅱ)當(dāng)a≥0時(shí),記函數(shù)Γ(x)=$\frac{1}{2}$ax2+(1-2a)x+$\frac{a}{x}$-1+f(x),試求Γ(x)的單調(diào)遞減區(qū)間;
(Ⅲ)設(shè)函數(shù)h(x)=3λa-2a2(其中λ為常數(shù)),若函數(shù)f(x)在區(qū)間(0,2)上不存在極值,當(dāng)λ∈(-∞,0]∪[${\frac{8}{3}$,+∞)時(shí),求h(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知命題p:指數(shù)函數(shù)y=ax(a>0且a≠1)單調(diào)遞增;命題q:?x∈R,x2-(3a-4)x+1=0.若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知A=(a,a+4),(a∈R),B=[2,5],若A∩B=B,則a的取值范圍是(1,2).

查看答案和解析>>

同步練習(xí)冊(cè)答案