【題目】設(shè)圓.點(diǎn)分別是圓 上的動(dòng)點(diǎn),P為直線上的動(dòng)點(diǎn),則的最小值為_________.

【答案】

【解析】

在直接坐標(biāo)系中,畫出兩個(gè)圓的圖形和直線的圖象,根據(jù)圓的性質(zhì),問(wèn)題就轉(zhuǎn)化為|PC1|+|PC2|﹣R﹣r=|PC1|+|PC2|﹣7的最小值,運(yùn)用幾何的知識(shí),作出C1關(guān)于直線yx對(duì)稱點(diǎn)C,并求出坐標(biāo),由平面幾何的知識(shí)易知當(dāng)CPC2共線時(shí),|PC1|+|PC2|取得最小值,最后利用兩點(diǎn)問(wèn)題距離公式可以求出最小值.

可知圓C1的圓心(5,﹣2),r=2,圓C2的圓心(7,﹣1),R=5,如圖所示:

對(duì)于直線yx上的任一點(diǎn)P,由圖象可知,要使|PA|+|PB|的得最小值,

則問(wèn)題可轉(zhuǎn)化為求|PC1|+|PC2|﹣R﹣r=|PC1|+|PC2|﹣7的最小值,

即可看作直線yx上一點(diǎn)到兩定點(diǎn)距離之和的最小值減去7,

C1關(guān)于直線yx對(duì)稱的點(diǎn)為C(﹣2,5),

由平面幾何的知識(shí)易知當(dāng)CP、C2共線時(shí),|PC1|+|PC2|取得最小值,

即直線y=x上一點(diǎn)到兩定點(diǎn)距離之和取得最小值為|CC2|

|PA|+|PB|的最小值為

﹣7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線斜率為負(fù)值.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若有兩個(gè)極值點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為數(shù)列的前項(xiàng)和為,滿足,,,且.若存在,使得成立則實(shí)數(shù)的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;

(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

中,角AB、C的對(duì)邊分別為a、b、c,面積為S,已知

)求證:成等差數(shù)列;

)若.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次漢馬(武漢馬拉松比賽的簡(jiǎn)稱)全程比賽中,50名參賽選手(24名男選手和26名女選手)的成績(jī)(單位:分鐘)分別為數(shù)據(jù) (成績(jī)不為0).

24名男選手成績(jī)的莖葉圖如圖⑴所示,若將男選手成績(jī)由好到差編為124號(hào),再用系統(tǒng)抽樣方法從中抽取6人,求其中成績(jī)?cè)趨^(qū)間上的選手人數(shù);

Ⅱ)如圖⑵所示的程序用來(lái)對(duì)這50名選手的成績(jī)進(jìn)行統(tǒng)計(jì).為了便于區(qū)別性別,輸入時(shí),男選手的成績(jī)數(shù)據(jù)用正數(shù),女選手的成績(jī)數(shù)據(jù)用其相反數(shù)(負(fù)數(shù)),請(qǐng)完成圖⑵中空白的判斷框①處的填寫,并說(shuō)明輸出數(shù)值的統(tǒng)計(jì)意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)若在區(qū)間上不單調(diào),求的取值范圍;

2)設(shè),若函數(shù)在區(qū)間恒有意義,求實(shí)數(shù)的取值范圍;

3)已知方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)定點(diǎn),, 動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡為曲線,直線.

1)求曲線的軌跡方程;

2)若與曲線交于不同的兩點(diǎn),且 (為坐標(biāo)原點(diǎn)),求直線的斜率;

3)若是直線上的動(dòng)點(diǎn),過(guò)作曲線的兩條切線,切點(diǎn)為、,探究:直線是否過(guò)定點(diǎn),若存在定點(diǎn)請(qǐng)寫出坐標(biāo),若不存在則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)命題:

函數(shù)的一條對(duì)稱軸是;

函數(shù)的圖象關(guān)于點(diǎn)(,0)對(duì)稱;

正弦函數(shù)在第一象限為增函數(shù)

,則,其中

以上四個(gè)命題中正確的有    (填寫正確命題前面的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案