【題目】設(shè)圓圓.點(diǎn)分別是圓 上的動(dòng)點(diǎn),P為直線上的動(dòng)點(diǎn),則的最小值為_________.
【答案】
【解析】
在直接坐標(biāo)系中,畫出兩個(gè)圓的圖形和直線的圖象,根據(jù)圓的性質(zhì),問(wèn)題就轉(zhuǎn)化為|PC1|+|PC2|﹣R﹣r=|PC1|+|PC2|﹣7的最小值,運(yùn)用幾何的知識(shí),作出C1關(guān)于直線y=x對(duì)稱點(diǎn)C,并求出坐標(biāo),由平面幾何的知識(shí)易知當(dāng)C與P、C2共線時(shí),|PC1|+|PC2|取得最小值,最后利用兩點(diǎn)問(wèn)題距離公式可以求出最小值.
可知圓C1的圓心(5,﹣2),r=2,圓C2的圓心(7,﹣1),R=5,如圖所示:
對(duì)于直線y=x上的任一點(diǎn)P,由圖象可知,要使|PA|+|PB|的得最小值,
則問(wèn)題可轉(zhuǎn)化為求|PC1|+|PC2|﹣R﹣r=|PC1|+|PC2|﹣7的最小值,
即可看作直線y=x上一點(diǎn)到兩定點(diǎn)距離之和的最小值減去7,
又C1關(guān)于直線y=x對(duì)稱的點(diǎn)為C(﹣2,5),
由平面幾何的知識(shí)易知當(dāng)C與P、C2共線時(shí),|PC1|+|PC2|取得最小值,
即直線y=x上一點(diǎn)到兩定點(diǎn)距離之和取得最小值為|CC2|
∴|PA|+|PB|的最小值為
=﹣7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在點(diǎn)處的切線斜率為負(fù)值.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若有兩個(gè)極值點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,滿足,,,且.若存在,使得成立,則實(shí)數(shù)的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
在中,角A、B、C的對(duì)邊分別為a、b、c,面積為S,已知
(Ⅰ)求證:成等差數(shù)列;
(Ⅱ)若求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次“漢馬”(武漢馬拉松比賽的簡(jiǎn)稱)全程比賽中,50名參賽選手(24名男選手和26名女選手)的成績(jī)(單位:分鐘)分別為數(shù)據(jù) (成績(jī)不為0).
(Ⅰ)24名男選手成績(jī)的莖葉圖如圖⑴所示,若將男選手成績(jī)由好到差編為1~24號(hào),再用系統(tǒng)抽樣方法從中抽取6人,求其中成績(jī)?cè)趨^(qū)間上的選手人數(shù);
(Ⅱ)如圖⑵所示的程序用來(lái)對(duì)這50名選手的成績(jī)進(jìn)行統(tǒng)計(jì).為了便于區(qū)別性別,輸入時(shí),男選手的成績(jī)數(shù)據(jù)用正數(shù),女選手的成績(jī)數(shù)據(jù)用其相反數(shù)(負(fù)數(shù)),請(qǐng)完成圖⑵中空白的判斷框①處的填寫,并說(shuō)明輸出數(shù)值和的統(tǒng)計(jì)意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若在區(qū)間上不單調(diào),求的取值范圍;
(2)設(shè),若函數(shù)在區(qū)間恒有意義,求實(shí)數(shù)的取值范圍;
(3)已知方程在有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)定點(diǎn),, 動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡為曲線,直線:.
(1)求曲線的軌跡方程;
(2)若與曲線交于不同的、兩點(diǎn),且 (為坐標(biāo)原點(diǎn)),求直線的斜率;
(3)若,是直線上的動(dòng)點(diǎn),過(guò)作曲線的兩條切線、,切點(diǎn)為、,探究:直線是否過(guò)定點(diǎn),若存在定點(diǎn)請(qǐng)寫出坐標(biāo),若不存在則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列五個(gè)命題:
①函數(shù)的一條對(duì)稱軸是;
②函數(shù)的圖象關(guān)于點(diǎn)(,0)對(duì)稱;
③正弦函數(shù)在第一象限為增函數(shù)
④若,則,其中
以上四個(gè)命題中正確的有 (填寫正確命題前面的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com