【題目】給出下列結論:
動點分別到兩定點(-3,0)、(3,0) 連線的斜率之乘積為,設的軌跡為曲線,分別為曲線的左、右焦點,則下列說法中:
(1)曲線的焦點坐標為;
(2)當時,的內切圓圓心在直線上;
(3)若,則;
(4)設,則的最小值為;
其中正確的序號是:_____________.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形中,,四邊形為矩形,平面平面,.
(1)求證:平面;
(2)點在線段上運動,設平面與平面所成二面角的平面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件需另投入成本萬元,當年產(chǎn)量不足80千件時(萬元);當年產(chǎn)量不小于80千件時(萬元),每千件產(chǎn)品的售價為50萬元,該廠生產(chǎn)的產(chǎn)品能全部售完.
(1)寫出年利潤萬元關于(千件)的函數(shù)關系;
(2)當年產(chǎn)量為多少千件時該廠當年的利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,O為坐標原點,點F為拋物線C1:的焦點,且拋物線C1上點P處的切線與圓C2:相切于點Q.
(Ⅰ)當直線PQ的方程為時,求 拋物線C1的方程;
(Ⅱ)當正數(shù)P變化時,記S1 ,S2分別為△FPQ,△FOQ的面積,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知拋物線,過點任作一直線與相交于兩點,過點作軸的平行線與直線相交于點為坐標原點).
(1)證明: 動點在定直線上;
(2)作的任意一條切線 (不含軸), 與直線相交于點與(1)中的定直線相交于點.
證明: 為定值, 并求此定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com