在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn),
若點(diǎn)C滿足,點(diǎn)C的軌跡與拋物線交于A、B兩點(diǎn).
(I)求證:
(II)在軸正半軸上是否存在一定點(diǎn),使得過(guò)點(diǎn)P的任意一條拋物線的弦的長(zhǎng)度是原點(diǎn)到該弦中點(diǎn)距離的2倍,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
 (I)證明見(jiàn)解析              
。↖I)存在
(I)設(shè),由知,點(diǎn)C的軌跡為.  2分
消y得:
設(shè),則,          
所以
所以,于是.              
。↖I)假設(shè)存在過(guò)點(diǎn)P的弦EF符合題意,則此弦的斜率不為零,設(shè)此弦所在直線的方程為
消x得:.設(shè),,
.                         
因?yàn)檫^(guò)點(diǎn)P作拋物線的弦的長(zhǎng)度是原點(diǎn)到弦的中點(diǎn)距離的2倍,
所以,  
所以,所以存在.         
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
設(shè)點(diǎn)在直線上,過(guò)點(diǎn)作雙曲線的兩條切線,切點(diǎn)為,定點(diǎn)。

(1)求證:三點(diǎn)共線;
(2)過(guò)點(diǎn)作直線的垂線,垂足為,試求的重心所在曲線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓W的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,兩條準(zhǔn)線間的距離為6. 橢圓W的左焦點(diǎn)為,過(guò)左準(zhǔn)線與軸的交點(diǎn)任作一條斜率不為零的直線與橢圓W交于不同的兩點(diǎn)、,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證: ();
(Ⅲ)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在y軸上,離心率e = ,橢圓上的點(diǎn)到焦點(diǎn)的最短距離為1-, 直線ly軸交于點(diǎn)P(0,m),與橢圓C交于相異兩點(diǎn)A、B,且
(1)求橢圓方程;
(2)若,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題



(1)求動(dòng)圓圓心M的軌跡方程;
(2)過(guò)原點(diǎn)且傾斜角為的直線交(1)中軌跡P、Q兩點(diǎn),PQ的中垂線交軸N. 求三角形PQN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線y=x2的一組斜率為2的平行弦的中點(diǎn)的軌跡是(  )
A.圓B.橢圓C.拋物線D.射線(不含端點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在中,,AC、BC邊上的高分別為BD、AE,則以A、B為焦點(diǎn),且過(guò)D、E的橢圓與雙曲線的離心率的倒數(shù)和為      (   )
A.           B.     C.          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若橢圓的離心率是,則雙曲線的離心率是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若拋物線y2=mx與橢圓=1有一個(gè)共同的焦點(diǎn),則m=______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案