【題目】如圖所示,在平面上,點(diǎn),點(diǎn)在單位圓上且 .
(1)若點(diǎn),求的值:
(2)若,四邊形的面積用表示,求的取值范圍.
【答案】(1)﹣,(2).
【解析】
(1)根據(jù)三角函數(shù)的定義求得tanθ,進(jìn)而得到tan2θ,最后求出.(2)由條件求出,于是得到+=sinθ+cosθ+1=sin(θ+)+1(0<θ<π),然后再根據(jù)三角函數(shù)的相關(guān)知識求解.
(1)由條件得B(﹣,),∠AOB=θ,
∴ tanθ==﹣,
∴ tan2θ = = = ,
∴tan(2θ+)= = =﹣.
(2)由題意得=||||sin(π﹣θ)=sinθ.
∵=(1,0),=(cosθ,sinθ),
∴ =+=(1+cosθ,sinθ),
∴ =1+cosθ,
∴ +=sinθ+cosθ+1=sin(θ+)+1(0<θ<π),
∵ <<,
∴﹣<sin()≤1,
∴ .
∴+的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段與軸的交點(diǎn)滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)圓是以為直徑的圓,一直線與之相切,并與橢圓交于不同的兩點(diǎn)、,當(dāng)且滿足時(shí),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在區(qū)間(0,1]上任取兩個(gè)數(shù)a、b,則函數(shù)f(x)=x2+ax+b2無零點(diǎn)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中, , , ,若該三棱錐的四個(gè)頂點(diǎn)均在同一球面上,則該球的體積為( )
A. B. C. D.
【答案】D
【解析】在三棱錐中,因?yàn)?/span>, , ,所以,則該幾何體的外接球即為以為棱長的長方體的外接球,則 ,其體積為 ;故選D.
點(diǎn)睛:在處理幾何體的外接球問題,往往將所給幾何體與正方體或長方體進(jìn)行聯(lián)系,常用補(bǔ)體法補(bǔ)成正方體或長方體進(jìn)行處理,本題中由數(shù)量關(guān)系可證得 從而幾何體的外接球即為以為棱長的長方體的外接球,也是處理本題的技巧所在.
【題型】單選題
【結(jié)束】
21
【題目】已知函數(shù),則的大致圖象為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)袋子中裝有a個(gè)紅球,b個(gè)黃球,c個(gè)藍(lán)球,且規(guī)定:取出一個(gè)紅球得1分,取出一個(gè)黃球2分,取出藍(lán)球得3分.
(1)當(dāng)a=3,b=2,c=1時(shí),從該袋子中任。ㄓ蟹呕,且每球取到的機(jī)會(huì)均等)2個(gè)球,記隨機(jī)變量ξ為取出此2球所得分?jǐn)?shù)之和.求ξ分布列;
(2)從該袋子中任。ㄇ颐壳蛉〉降臋C(jī)會(huì)均等)1個(gè)球,記隨機(jī)變量η為取出此球所得分?jǐn)?shù).若 ,求a:b:c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某游樂場有一個(gè)半徑為50米的摩天輪,該摩天輪的圓心距離地面52米,摩天輪逆時(shí)針勻速轉(zhuǎn)動(dòng),每轉(zhuǎn)動(dòng)一圈需要分鐘.若游客從最低點(diǎn)處登上摩天輪,從摩天輪開始轉(zhuǎn)動(dòng)計(jì)時(shí).
(I)求游客與地面的距離(米)與摩天輪轉(zhuǎn)動(dòng)時(shí)間(分)的函數(shù)關(guān)系式;
(Ⅱ)摩天輪轉(zhuǎn)動(dòng)一圈的過程中,游客的高度在距地面77米及以上的時(shí)間不少于4分鐘,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x(1+a|x|).設(shè)關(guān)于x的不等式f(x+a)<f(x)的解集為A,若 ,則實(shí)數(shù)a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象如圖所示,
(1)畫出函數(shù)f(x),x∈R剩余部分的圖象,并根據(jù)圖象寫出函數(shù)f(x),x∈R的單調(diào)區(qū)間;(只寫答案)
(2)求函數(shù)f(x),x∈R的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在實(shí)數(shù),使得成立,則x0稱為f(x)的“不動(dòng)點(diǎn)”.
(1)設(shè)函數(shù),求的不動(dòng)點(diǎn);
(2)設(shè)函數(shù),若對于任意的實(shí)數(shù)b,函數(shù)f(x)恒有兩相異的不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)設(shè)函數(shù)定義在上,證明:若存在唯一的不動(dòng)點(diǎn),則也存在唯一的不動(dòng)點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com