【題目】如圖,在三棱錐中, , , ,若該三棱錐的四個(gè)頂點(diǎn)均在同一球面上,則該球的體積為( )
A. B. C. D.
【答案】D
【解析】在三棱錐中,因?yàn)?/span>, , ,所以,則該幾何體的外接球即為以為棱長的長方體的外接球,則 ,其體積為 ;故選D.
點(diǎn)睛:在處理幾何體的外接球問題,往往將所給幾何體與正方體或長方體進(jìn)行聯(lián)系,常用補(bǔ)體法補(bǔ)成正方體或長方體進(jìn)行處理,本題中由數(shù)量關(guān)系可證得 從而幾何體的外接球即為以為棱長的長方體的外接球,也是處理本題的技巧所在.
【題型】單選題
【結(jié)束】
21
【題目】已知函數(shù),則的大致圖象為( )
A. B.
C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)=(x+l)lnx﹣ax+a (a為正實(shí)數(shù),且為常數(shù))
(1)若f(x)在(0,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為 1, 為的中點(diǎn), 為線段上的動(dòng)點(diǎn),過點(diǎn)A、P、Q的平面截該正方體所得的截面記為.則下列命題正確的是__________(寫出所有正確命題的編號(hào)).
①當(dāng)時(shí), 為四邊形;②當(dāng)時(shí), 為等腰梯形;③當(dāng)時(shí), 為六邊形;④當(dāng)時(shí), 的面積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,底面為正三角形, 底面,且, 是的中點(diǎn).
(1)求證: 平面;
(2)求證:平面平面;
(3)在側(cè)棱上是否存在一點(diǎn),使得三棱錐的體積是?若存在,求出的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)與上、下頂點(diǎn)構(gòu)成直角三角形,以橢圓的長軸長為直徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過橢圓右焦點(diǎn)且不平行于軸的動(dòng)直線與橢圓相交于兩點(diǎn),探究在軸上是否存在定點(diǎn),使得為定值?若存在,試求出定值和點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二年級(jí)進(jìn)行了百科知識(shí)大賽,為了了解高二年級(jí)900名同學(xué)的比賽情況,現(xiàn)在甲、乙兩個(gè)班級(jí)各隨機(jī)抽取了10名同學(xué)的成績,比賽成績滿分為100分,80分以上可獲得二等獎(jiǎng),90分以上可以獲得一等獎(jiǎng),已知抽取的兩個(gè)班學(xué)生的成績(單位:分)數(shù)據(jù)的莖葉圖如圖1所示:
(1)比較兩組數(shù)據(jù)的分散程度(只需要給出結(jié)論),并求出甲組數(shù)據(jù)的頻率分布直方圖如圖2中所示的值;
(2)現(xiàn)從兩組數(shù)據(jù)中獲獎(jiǎng)的學(xué)生里分別隨機(jī)抽取一人接受采訪,求被抽中的甲班學(xué)生成績高于乙班學(xué)生成績的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中, 、分別是棱、的中點(diǎn),點(diǎn)在棱上,已知, , .
(1)求證: 平面;
(2)設(shè)點(diǎn)在棱上,當(dāng)為何值時(shí),平面平面?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)M是圓心為E的圓上的動(dòng)點(diǎn),點(diǎn),線段MF的垂直平分線交EM于點(diǎn)P.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過原點(diǎn)O作直線交(Ⅰ)中軌跡C于點(diǎn)A、B,點(diǎn)D滿足,試求四邊形AFBD的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)若對(duì),f(x) 恒成立,求的取值范圍;
(2)已知常數(shù)aR,解關(guān)于x的不等式f(x) .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com