過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F作斜率為
3
的直線,該直線交拋物線于A、B兩點(diǎn),交其準(zhǔn)線L于點(diǎn)C,若|AF|=6,則此拋物線的方程為
 
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)A的坐標(biāo)是(xA,yA),由焦半徑公式求出xA,再由點(diǎn)斜式方程求出直線方程,把xA代入直線方程求出yA,把點(diǎn)A的坐標(biāo)代入拋物線方程化簡(jiǎn)后,求出p的值即可.
解答: 解:設(shè)A的坐標(biāo)是(xA,yA),
因?yàn)閨AF|=6,所以xA+
p
2
=6,則xA=6-
p
2
,①
由題意得焦點(diǎn)F的坐標(biāo)是(
p
2
,0),
所以過(guò)F點(diǎn)且斜率為
3
的直線方程是y=
3
(x-
p
2
),
將①代入上式得,yA=
3
(6-
p
2
-
p
2
)=
3
(6-p),
則A的坐標(biāo)是(6-
p
2
3
(6-p)),代入y2=2px得,
p2-12p+27=0,解得p=3或p=9,
所以此拋物線的方程為y2=6x或y2=18x,
故答案為:y2=6x或y2=18x.
點(diǎn)評(píng):本題考查拋物線的方程、焦半徑公式,以及直線與拋物線的位置關(guān)系,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x2cosx的導(dǎo)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x>5},B={x|x<-2},全集I=R,求A∩B,A∪B,CUA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
x2-2x-3≤0
|x-a|≤2

(1)當(dāng)0<a<1時(shí),求不等式的解;
(2)當(dāng)x∈∅時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:4x2+y2=1及直線l:y=x+m,m∈R.
(1)求直線l被橢圓C截得的弦的中點(diǎn)的軌跡;
(2)若直線l交橢圓C于P、Q兩點(diǎn),且OP⊥OQ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,3(a3+a5)+2(a7+a10+a13=48,則{an}的前13項(xiàng)和S13=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|3≤x<7},B={2<x<10},則A∩B(  )
A、{x|3≤x<7}
B、{x|3<x<7}
C、{x|2≤x<7}
D、{x|2≤x<10}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
3
2
,前n項(xiàng)和為Sn,且滿足2an+1+Sn=3(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求滿足
18
17
S2n
Sn
8
7
的所有n的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是△ABC內(nèi)一點(diǎn),且
BA
+
BC
=6
BP
,則
S△ABP
S△ACP
=(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
5

查看答案和解析>>

同步練習(xí)冊(cè)答案