已知集合A={x|3≤x<7},B={2<x<10},則A∩B( 。
A、{x|3≤x<7}
B、{x|3<x<7}
C、{x|2≤x<7}
D、{x|2≤x<10}
考點:交集及其運算
專題:集合
分析:由題意和交集的運算直接求出A∩B.
解答: 解:因為集合A={x|3≤x<7},B={2<x<10},
所以A∩B={x|3≤x<7},
故選:A.
點評:本題考查交集及其運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Acos2(ωx+φ})+1({A>0,ω>0,0<φ<
π
2
)的最大值為3,f(x)的圖象與y軸的交點坐標為(0,2),其相鄰兩條對稱軸間的距離為2,則f(1)+f(2)+…+f(2015)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用二分法求函數(shù)f(x)=3x-x-4的一個零點,其參考數(shù)據(jù)如下:
f(1.6000)=0.200f(1.5750)=0.067f(1.5625)=0.003
f(1.5563)=-0.029f(1.5500)=-0.060
據(jù)此數(shù)據(jù),可得方程3x-x-4=0的一個近似解(精確到0.01)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)的焦點F作斜率為
3
的直線,該直線交拋物線于A、B兩點,交其準線L于點C,若|AF|=6,則此拋物線的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z1=5+13i,z2=7+28i,其中i是虛數(shù)單位,則復數(shù)(z1-z2)i的實部為  (
A、-20B、15C、30D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y=ax2+c交x軸于A、B兩點,且AB=5,交y軸于點C(0,
75
16
).
(1)求拋物線的解析式
(2)若點D為拋物線在x軸上方的任意一點,求tan∠DAB+tan∠DBA為一定值;
(3)若點D(-1.5,m)是拋物線y=ax2+c上一點.
①判斷△ABD的形狀并加以證明.
②若M是線段AD上以動點(不與A、D重合),N是線段AB上一點,設AN=t,t為何值時,線段AD上的點M總存在兩個不同的位置使∠BMN=∠BDA

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式:loga
2
3
x-1)<loga3x(a>0且a≠1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把5名輔導員分派到3個不同的科學科小組,每個小組至少分派一名輔導員,共有多少種不同的方法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=a2x-2ax-1(a>0,a≠1)在區(qū)間[-1,1]上最大值是14,求a的值.

查看答案和解析>>

同步練習冊答案