20.設(shè)雙曲線$\frac{x^2}{m}+\frac{y^2}{n}$=1的離心率為2,且一個(gè)焦點(diǎn)F(2,0),則此雙曲線的方程為( 。
A.${x^2}-\frac{y^2}{3}=1$B.${y^2}-\frac{x^2}{3}=1$C.$\frac{x^2}{12}-\frac{y^2}{4}=1$D.$\frac{y^2}{12}-\frac{x^2}{4}=1$

分析 根據(jù)雙曲線的離心率以及焦點(diǎn)坐標(biāo),確定a,b,c即可.

解答 解:由已知雙曲線的焦點(diǎn)在x軸上,
∵雙曲線的焦點(diǎn)F(2,0),
∴c=2,
∵離心率e=2=$\frac{c}{a}$=$\frac{2}{a}$,
則a=1,b2=c2-a2=4-1=3,
則雙曲線的方程為${x^2}-\frac{y^2}{3}=1$,
故選:A.

點(diǎn)評 本題主要考查雙曲線的方程的求解,根據(jù)條件求出a,b,c的值是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.?dāng)?shù)列{an}、{bn}滿足:an+bn=2n-1,n∈N*
(1)若{an}的前n項(xiàng)和Sn=2n2-n,求{an}、{bn}的通項(xiàng)公式;
(2)若an=k•2n-1,n∈N*,數(shù)列{bn}是單調(diào)遞減數(shù)列,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=sin(ωx+φ)(ω>0)圖象的兩條相鄰的對稱軸之間的距離為$\frac{π}{2}$.若角φ的終邊經(jīng)過點(diǎn)P(-1,2),則f($\frac{5π}{4}$)=( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.-$\frac{2\sqrt{5}}{5}$D.-$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)y=x3+x2+x+1在點(diǎn)M(1,4)處的切線為l,雙曲線$\frac{x^2}{8}$-$\frac{y^2}{2}$=1的兩條漸近線與l圍成的封閉圖形的區(qū)域?yàn)镻(包括邊界),點(diǎn)A為區(qū)域P內(nèi)的任一點(diǎn),已知B(4,5),O為坐標(biāo)原點(diǎn),則$\overrightarrow{OA}$•$\overrightarrow{OB}$的最大值為( 。
A.$\frac{23}{12}$B.3C.2D.$\frac{26}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x)=f(x+4),且當(dāng)x∈[-2,0]時(shí),f(x)=(${\frac{1}{2}$)x-1,若在區(qū)間(-2,6)內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有三個(gè)不同的實(shí)數(shù)根,則a的取值范圍是(  )
A.(${\sqrt{3}$,0)B.(${\root{3}{4}$,2]C.[${\root{3}{4}$,2)D.[${\root{3}{4}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知隨機(jī)變量x的分布列為
x01234
P0.10.20.40.20.1
則隨機(jī)變量x的方差為1.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.?dāng)?shù)列{an}滿足a1=$\frac{1}{4}$,an=$\frac{{a}_{n-1}}{(-1)^{n}{a}_{n-1}-2}$(n≥2,n∈N). 令bn=ansin$\frac{(2n-1)π}{2}$
(1)證明:數(shù)列{${\frac{1}{a_n}$+(-1)n}為等比數(shù)列;
(2)設(shè)cn=$\frac{2}{3}$n•(${\frac{1}{b_n}$-1),求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)數(shù)列{bn}的前n項(xiàng)和為Tn.求證:對任意的n∈N*,Tn<$\frac{4}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一輛汽車在一條水平的公路上向正西行駛,到A處時(shí)測得公路北側(cè)一山頂D在西偏北30°的方向上,行駛600m后到達(dá)B處,測得此山頂在西偏北75°的方向上,仰角為30°,則此山的高度CD=(  ) m.
A.$100\sqrt{3}$B.$100\sqrt{6}$C.100D.$100\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知AB是⊙O的弦,P是AB上一點(diǎn).
(Ⅰ)若AB=6$\sqrt{2}$,PA=4$\sqrt{2}$,OP=3,求⊙O的半徑;
(Ⅱ)若C是圓O上一點(diǎn),且CA=CB,線段CE交AB于D.求證:△CAD~△CEA.

查看答案和解析>>

同步練習(xí)冊答案