【題目】已知曲C的極坐標(biāo)方程ρ=2sinθ,設(shè)直線L的參數(shù)方程 ,(t為參數(shù))設(shè)直線L與x軸的交點(diǎn)M,N是曲線C上一動(dòng)點(diǎn),求|MN|的最大值 .
【答案】
【解析】解:∵曲線C的極坐標(biāo)方程ρ=2sinθ,化成普通方程: x2+y2﹣2y=0,即x2+(y﹣1)2=1
∴曲線C表示以點(diǎn)P(0,1)為圓心,半徑為1的圓
∵直L的參數(shù)方程是:
∴直L的普通方程是:4x+3y﹣8=0
∴可得L與x軸的交點(diǎn)M坐標(biāo)為(2,0)
∴
由此可得曲C上一動(dòng)點(diǎn)N到M的最大距離等于
故答案為:
首先將曲線C化成普通方程,得出它是以P(0,1)為圓心半徑為1的圓,然后將直線L化成普通方程,得出它與x軸的交點(diǎn)M的坐標(biāo),最后用兩個(gè)點(diǎn)之間的距離公式得出PM的距離,從而得出曲C上一動(dòng)點(diǎn)N到M的最大距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且滿足cos2A﹣cos2B=2cos( ﹣A)cos( +A).
(1)求角B的值;
(2)若b= 且b≤a,求2a﹣c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1= ,an=an﹣12+an﹣1(n≥2且n∈N).
(Ⅰ)求a2 , a3;并證明:2 ﹣ ≤an≤ 3 ;
(Ⅱ)設(shè)數(shù)列{an2}的前n項(xiàng)和為An , 數(shù)列{ }的前n項(xiàng)和為Bn , 證明: = an+1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(ax+1)ex﹣(a+1)x﹣1.
(1)求y=f(x)在(0,f(0))處的切線方程;
(2)若x>0時(shí),不等式f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
設(shè)函數(shù)f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax對(duì)任意的實(shí)數(shù)x恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊中, , 分別為, 邊的中點(diǎn), 為的中點(diǎn), 為邊上一點(diǎn),且,將沿折到的位置,使平面平面.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長方體ABCD-A1B1C1D1中,底面ABCD為正方形,AB=4,AA1=2,點(diǎn)E1在棱C1D1上,且D1E1=3。
(I)在棱CD上確定一點(diǎn)E,使得直線EE1∥平面D1DB,并寫出證明過程;
(II)求證:平面A1ACC1⊥平面D1DB;
(III)若動(dòng)點(diǎn)F在正方形ABCD內(nèi),且AF=2,請(qǐng)說明點(diǎn)F的軌跡,試求E1F長度的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB∥DC,DA⊥AB,AB=AP=2,DA=DC=1,E為PC上一點(diǎn),且PE= PC.
(Ⅰ)求PE的長;
(Ⅱ)求證:AE⊥平面PBC;
(Ⅲ)求二面角B﹣AE﹣D的度數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)邊分別是a,b,c,若sin(A﹣B)= sinAcosB﹣ sinBcosA.
(1)求證:A=B;
(2)若A= ,a= ,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com