【題目】已知數(shù)列{an}滿足:a1= ,an=an﹣12+an﹣1(n≥2且n∈N).
(Ⅰ)求a2 , a3;并證明:2 ﹣ ≤an≤ 3 ;
(Ⅱ)設(shè)數(shù)列{an2}的前n項和為An , 數(shù)列{ }的前n項和為Bn , 證明: = an+1 .
【答案】解:(I)a2=a12+a1= = , a3=a22+a2= = .
證明:∵an=an﹣12+an﹣1 ,
∴an+ =an﹣12+an﹣1+ =(an﹣1+ )2+ >(an﹣1+ )2 ,
∴an+ >(an﹣1+ )2>(an﹣2+ )4>>(an﹣3+ )8>…>(a1+ ) =2 ,
∴an>2 ﹣ ,
又∵an﹣an﹣1=an﹣12>0,∴an>an﹣1>an﹣2>…>a1>1,
∴an2>an ,
∴an=an﹣12+an﹣1<2a ,
∴an<2a <222 <222
=2 ( ) = 3 .
綜上,2 ﹣ ≤an≤ 3 .
(II)證明:∵an=an﹣12+an﹣1 , ∴an﹣12=an﹣an﹣1 ,
∴An=a12+a22+a32+…an2=(a2﹣a1)+(a3﹣a2)+…+(an+1﹣an)=an+1﹣ ,
∵an=an﹣12+an﹣1=an﹣1(an﹣1+1),
∴ = = ,
∴ = ,
∴Bn= …+ =( )+( )+( ﹣ )+…+( )
= ﹣ .
∴ = = .
【解析】(I)分別令n=2,3即可計算a2 , a3 , 配方得an+ >(an﹣1+ )2 , 利用{an+ }的增減性得出不等式2 ﹣ ≤an , 利用{an}增減性得出an≤ 3 ;(II)分別使用因式分解和裂項法計算An , Bn , 即可得出結(jié)論.
【考點精析】利用數(shù)列的前n項和和數(shù)列的通項公式對題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.命題p:“?x0∈R, ”,則命題?p:?x∈R,x2﹣2x+1>0
B.“l(fā)na>lnb”是“2a>2b”的充要條件
C.命題“若x2=2,則 或 ”的逆否命題是“若 或 ,則x2≠2”
D.命題p:?x0∈R,1﹣x0<lnx0;命題q:對?x∈R,總有2x>0;則p∧q是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記min{x,y}= 設(shè)f(x)=min{x2 , x3},則( )
A.存在t>0,|f(t)+f(﹣t)|>f(t)﹣f(﹣t)
B.存在t>0,|f(t)﹣f(﹣t)|>f(t)﹣f(﹣t)
C.存在t>0,|f(1+t)+f(1﹣t)|>f(1+t)+f(1﹣t)
D.存在t>0,|f(1+t)﹣f(1﹣t)|>f(1+t)﹣f(1﹣t)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,a、b、c分別是角A、B、C的對邊,若A滿足2cos2A+cos(2A+ )=﹣ .
(Ⅰ)求A的值;
(Ⅱ)若c=3,△ABC的面積為3 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線y2=2px(p>0)的焦點F的直線與拋物線相交于M、N兩點,自M、N向準(zhǔn)線l作垂線,垂足分別為M1、N1.
(1)求;
(2)記△FMM1、△FM1N1、△FNN1的面積分別為、、,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校某文具商店經(jīng)營某種文具,商店每銷售一件該文具可獲利3元,若供大于求則削價處理,每處理一件文具虧損1元;若供不應(yīng)求,則可以從外部調(diào)劑供應(yīng),此時每件文具僅獲利2元.為了了解市場需求的情況,經(jīng)銷商統(tǒng)計了去年一年(52周)的銷售情況.
銷售量(件) | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
周數(shù) | 2 | 4 | 8 | 13 | 13 | 8 | 4 |
以去年每周的銷售量的頻率為今年每周市場需求量的概率.
(1)要使進(jìn)貨量不超過市場需求量的概率大于0.5,問進(jìn)貨量的最大值是多少?
(2)如果今年的周進(jìn)貨量為14,寫出周利潤Y的分布列;
(3)如果以周利潤的期望值為考慮問題的依據(jù),今年的周進(jìn)貨量定為多少合適?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲C的極坐標(biāo)方程ρ=2sinθ,設(shè)直線L的參數(shù)方程 ,(t為參數(shù))設(shè)直線L與x軸的交點M,N是曲線C上一動點,求|MN|的最大值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域為R的偶函數(shù)f(x)滿足x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時,f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(x+1)恰有三個零點,則a的取值范圍是( )
A.(0, )
B.(0, )
C.( , )
D.( , )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com