【題目】已知函數(shù)在處有極大值.
(1)求實(shí)數(shù)的值;
(2)若關(guān)于的方程,有三個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.
【答案】(1).
(2)(.
【解析】
(1)求函數(shù)的導(dǎo)數(shù),根據(jù)為函數(shù)的極大值點(diǎn),得,求得,檢驗(yàn)左右函數(shù)的單調(diào)性即可.
(2)根據(jù)(1)中導(dǎo)函數(shù),確定函數(shù)在上的圖象規(guī)律,將“有三個(gè)不同的實(shí)根”轉(zhuǎn)化為“有三個(gè)不同的交點(diǎn)”,即可得實(shí)數(shù)的取值范圍.
解:(1),
,令或,
當(dāng)時(shí),,故在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,
∴在處有極小值,舍.
故.
(2)由(1)知,,
故在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,
,,則當(dāng),,
,
故, , , ,, ,則三部分共同的函數(shù)值范圍為,
關(guān)于的方程,有三個(gè)不同的實(shí)根,即函數(shù)與直線(xiàn)在上有三個(gè)交點(diǎn)
∴實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的有( )
①函數(shù)y=的定義域?yàn)?/span>{x|x≥1};
②函數(shù)y=x2+x+1在(0,+∞)上是增函數(shù);
③函數(shù)f(x)=x3+1(x∈R),若f(a)=2,則f(-a)=-2;
④已知f(x)是R上的增函數(shù),若a+b>0,則有f(a)+f(b)>f(-a)+f(-b).
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xetx﹣ex+1,其中t∈R,e是自然對(duì)數(shù)的底數(shù).
(1)若方程f(x)=1無(wú)實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍;
(2)若函數(shù)f(x)在(0,+∞)內(nèi)為減函數(shù),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面推理過(guò)程中使用了類(lèi)比推理方法,其中推理正確的是( )
A. 平面內(nèi)的三條直線(xiàn),若,則.類(lèi)比推出:空間中的三條直線(xiàn),若,則
B. 平面內(nèi)的三條直線(xiàn),若,則.類(lèi)比推出:空間中的三條向量,若,則
C. 在平面內(nèi),若兩個(gè)正三角形的邊長(zhǎng)的比為,則它們的面積比為.類(lèi)比推出:在空間中,若兩個(gè)正四面體的棱長(zhǎng)的比為,則它們的體積比為
D. 若,則復(fù)數(shù).類(lèi)比推理:“若,則”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】D為△ABC的BC邊上一點(diǎn), ,過(guò)D點(diǎn)的直線(xiàn)分別交直線(xiàn)AB、AC于E、F,若 ,其中λ>0,μ>0,則 + = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,且關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班48人進(jìn)行了問(wèn)卷調(diào)查得到了如下的2×2列聯(lián)表:
喜愛(ài)打籃球 | 不喜愛(ài)打籃球 | 合計(jì) | |
男生 | 6 | ||
女生 | 10 | ||
合計(jì) | 48 |
已知在全班48人中隨機(jī)抽取1人,抽到喜愛(ài)打籃球的學(xué)生的概率為.
(1)請(qǐng)將上面的2×2列聯(lián)表補(bǔ)充完整;(不用寫(xiě)計(jì)算過(guò)程)
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由.
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù),若已知其在內(nèi)只取到一個(gè)最大值和一個(gè)最小值,且當(dāng)時(shí)函數(shù)取得最大值為;當(dāng),函數(shù)取得最小值為.
(1)求出此函數(shù)的解析式;
(2)是否存在實(shí)數(shù),滿(mǎn)足不等式?若存在,求出的范圍(或值),若不存在,請(qǐng)說(shuō)明理由;
(3)若將函數(shù)的圖像保持橫坐標(biāo)不變縱坐標(biāo)變?yōu)樵瓉?lái)的得到函數(shù),再將函數(shù)的圖像向左平移個(gè)單位得到函數(shù),已知函數(shù)的最大值為,求滿(mǎn)足條件的的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在區(qū)間(0,+∞)內(nèi)的單調(diào)函數(shù),且對(duì)x∈(0,∞),都有f[f(x)﹣lnx]=e+1,設(shè)f′(x)為f(x)的導(dǎo)函數(shù),則函數(shù)g(x)=f(x)﹣f′(x)的零點(diǎn)個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com