【題目】已知函數(shù)處有極大值.

(1)求實(shí)數(shù)的值;

(2)若關(guān)于的方程有三個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.

【答案】(1).

(2)(.

【解析】

(1)求函數(shù)的導(dǎo)數(shù),根據(jù)為函數(shù)的極大值點(diǎn),得,求得,檢驗(yàn)左右函數(shù)的單調(diào)性即可.

(2)根據(jù)(1)中導(dǎo)函數(shù),確定函數(shù)在上的圖象規(guī)律,將“有三個(gè)不同的實(shí)根”轉(zhuǎn)化為“有三個(gè)不同的交點(diǎn)”,即可得實(shí)數(shù)的取值范圍.

解:(1)

,令,

當(dāng)時(shí),,故在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,

處有極小值,舍.

.

(2)由(1)知,

上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,

,,則當(dāng),

,

, , , , ,則三部分共同的函數(shù)值范圍為,

關(guān)于的方程,有三個(gè)不同的實(shí)根,即函數(shù)與直線(xiàn)上有三個(gè)交點(diǎn)

∴實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的有(  )

①函數(shù)y的定義域?yàn)?/span>{x|x1};

②函數(shù)yx2x+1(0,+)上是增函數(shù);

③函數(shù)f(x)=x3+1(xR),若f(a)=2,則f(-a)=-2;

④已知f(x)R上的增函數(shù),若ab>0,則有f(a)+f(b)>f(-a)+f(-b).

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xetx﹣ex+1,其中t∈R,e是自然對(duì)數(shù)的底數(shù).
(1)若方程f(x)=1無(wú)實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍;
(2)若函數(shù)f(x)在(0,+∞)內(nèi)為減函數(shù),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面推理過(guò)程中使用了類(lèi)比推理方法,其中推理正確的是( )

A. 平面內(nèi)的三條直線(xiàn),若,則.類(lèi)比推出:空間中的三條直線(xiàn),若,則

B. 平面內(nèi)的三條直線(xiàn),若,則.類(lèi)比推出:空間中的三條向量,若,則

C. 在平面內(nèi),若兩個(gè)正三角形的邊長(zhǎng)的比為,則它們的面積比為.類(lèi)比推出:在空間中,若兩個(gè)正四面體的棱長(zhǎng)的比為,則它們的體積比為

D. ,則復(fù)數(shù).類(lèi)比推理:,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】D為△ABC的BC邊上一點(diǎn), ,過(guò)D點(diǎn)的直線(xiàn)分別交直線(xiàn)AB、AC于E、F,若 ,其中λ>0,μ>0,則 + =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若,且關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班48人進(jìn)行了問(wèn)卷調(diào)查得到了如下的2×2列聯(lián)表:

喜愛(ài)打籃球

不喜愛(ài)打籃球

合計(jì)

男生

6

女生

10

合計(jì)

48

已知在全班48人中隨機(jī)抽取1人,抽到喜愛(ài)打籃球的學(xué)生的概率為.

(1)請(qǐng)將上面的2×2列聯(lián)表補(bǔ)充完整;(不用寫(xiě)計(jì)算過(guò)程)

(2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由.

P(K2≥k0)

0.05

0.025

0.010

0.005

0.001

k0

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù),若已知其在內(nèi)只取到一個(gè)最大值和一個(gè)最小值,且當(dāng)時(shí)函數(shù)取得最大值為;當(dāng),函數(shù)取得最小值為

(1)求出此函數(shù)的解析式;

(2)是否存在實(shí)數(shù),滿(mǎn)足不等式?若存在,求出的范圍(或值),若不存在,請(qǐng)說(shuō)明理由;

(3)若將函數(shù)的圖像保持橫坐標(biāo)不變縱坐標(biāo)變?yōu)樵瓉?lái)的得到函數(shù),再將函數(shù)的圖像向左平移個(gè)單位得到函數(shù),已知函數(shù)的最大值為,求滿(mǎn)足條件的的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在區(qū)間(0,+∞)內(nèi)的單調(diào)函數(shù),且對(duì)x∈(0,∞),都有f[f(x)﹣lnx]=e+1,設(shè)f′(x)為f(x)的導(dǎo)函數(shù),則函數(shù)g(x)=f(x)﹣f′(x)的零點(diǎn)個(gè)數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案