【題目】已知數(shù)列,其前項和為,滿足,,其中,,.

⑴若,,),求證:數(shù)列是等比數(shù)列;

⑵若數(shù)列是等比數(shù)列,求,的值;

⑶若,且,求證:數(shù)列是等差數(shù)列.

【答案】(1)見解析(2)(3)見解析

【解析】試題分析:(1)(), 所以,故數(shù)列是等比數(shù)列;(2)利用特殊值法,得,;(3),所以,得,可證數(shù)列是等差數(shù)列.

試題解析:

(1)證明:若,則當(),

所以

所以,

又由,,

,,即,

所以,

故數(shù)列是等比數(shù)列.

(2)若是等比數(shù)列,設(shè)其公比為 ),

時,,即,得

          ,           

時,,即,得

          ,         

時,,即,得

         ,        

,得 ,

,得

解得

代入①式,得

此時(),

所以是公比為1的等比數(shù)列,

(3)證明:若,由,得,

  又,解得

,, ,,代入,

所以,,成等差數(shù)列,

,得

兩式相減得:

所以

相減得:

所以

所以

,

因為,所以,

即數(shù)列是等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】xOy中,曲線的參數(shù)方程為t為參數(shù)).在以坐標原點O為極點,x軸正半軸為極軸的極坐標系中,曲線,曲線,.

1)把的參數(shù)方程化為極坐標方程;

2)設(shè)分別交,于點P,Q,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界互聯(lián)網(wǎng)大會是由中國倡導(dǎo)并每年在浙江省嘉興市桐鄉(xiāng)烏鎮(zhèn)舉辦的世界性互聯(lián)網(wǎng)盛會,大會旨在搭建中國與世界互聯(lián)互通的國際平臺和國際互聯(lián)網(wǎng)共享共治的中國平臺,讓各國在爭議中求共識在共識中謀合作在合作中創(chuàng)共贏.20191020日至22日,第六屆世界互聯(lián)網(wǎng)大會如期舉行,為了大會順利召開,組委會特招募了1 000名志愿者.某部門為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在歲內(nèi)的人數(shù)為15,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:

1)求,的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)這次大會志愿者主要通過現(xiàn)場報名和登錄大會官網(wǎng)報名,即現(xiàn)場和網(wǎng)絡(luò)兩種方式報名調(diào)查.100位志愿者的報名方式部分數(shù)據(jù)如下表所示,完善下面的表格,通過計算說明能

否在犯錯誤的概率不超過0.001的前提下,認為選擇哪種報名方式與性別有關(guān)系”?

男性

女性

總計

現(xiàn)場報名

50

網(wǎng)絡(luò)報名

31

總計

50

參考公式及數(shù)據(jù):,其中.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)當時,討論函數(shù)的單調(diào)性

(2)當時,,對任意,都有恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銀川市房管局為了了解該市市民20181月至20191月期間購買二手房情況,首先隨機抽樣其中200名購房者,并對其購房面積m(單位:平方米,)進行了一次調(diào)查統(tǒng)計,制成了如圖所示的頻率分布直方圖.

(Ⅰ)試估計該市市民的平均購房面積:

(Ⅱ)現(xiàn)采用分層抽樣的方法從購房面積位于40位市民中隨機取4人,再從這4人中隨機抽取2人,求這2人的購房面積恰好有一人在的概率,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面是菱形,其對角線的交點為,且,.

1)求證:平面;

2)設(shè),若直線與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx,gx1

1)若fa)=2,求實數(shù)a的值;

2)判斷fx)的單調(diào)性,并證明;

3)設(shè)函數(shù)hx)=gxx0),若h2t+mht+40對任意的正實數(shù)t恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)內(nèi)為增函數(shù),求實數(shù)的取值范圍;

2)若函數(shù)內(nèi)恰有兩個零點,求實數(shù)的取值范圍;

3)已知,試估算的近似值,(結(jié)果精確到0.001

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和滿足,.數(shù)列的前項和為,則滿足的最小的值為______

查看答案和解析>>

同步練習(xí)冊答案