已知sinA=2sinB,tanA=3tanB,求cosA的值.
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:分類討論:(1)當(dāng)sinA=sinB=0時(shí),顯然已知式子成立,此時(shí)cosA=±1,(2)當(dāng)sinB≠0時(shí),由已知式子可得cosA的方程,解方程可得cosA=±
6
4
,綜合可得結(jié)論.
解答: 解:(1)當(dāng)sinA=sinB=0時(shí),顯然已知式子成立,此時(shí)cosA=±1,
(2)當(dāng)sinB≠0時(shí),由tanA=3tanB可得
sinA
cosA
=
3sinB
cosB
,
∵sinA=2sinB,∴
2sinB
cosA
=
3sinB
cosB
,∴cosA=
2
3
cosB,
∴cos2A=
4
9
cos2B,∴cos2A=
4
9
(1-sin2B)=
4
9
(1-
1
4
sin2A)
∴cos2A=
4
9
-
1
9
(1-cos2A),化簡(jiǎn)可得cos2A=
3
8
,
解得cosA=±
6
4

綜上可得cosA=±1或cosA=±
6
4
點(diǎn)評(píng):本題考查同角三角函數(shù)的基本關(guān)系,涉及分類討論的思想,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若log2x•log34•log59=8,則x=( 。
A、8B、25C、16D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(k+3)(2k+2)<0,則k的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過正棱臺(tái)兩底面中心的截面一定是(  )
A、直角梯形B、等腰梯形
C、一般梯形或等腰梯形D、矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)x,y滿足
4
x
+
9
y
=1,若xy≥m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程
x2
10-k
+
y2
k-2
=1表示橢圓.
(1)求k的取值范圍;
(2)若橢圓經(jīng)過點(diǎn)(1,-
3
),求橢圓的方程、離心率和準(zhǔn)線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,
a3+a11
a7
≤2,則下列結(jié)論中正確的是( 。
A、數(shù)列{an}是常數(shù)列
B、數(shù)列{an}是遞增數(shù)列
C、數(shù)列{an}是遞減數(shù)列
D、數(shù)列{an}有可能是遞增數(shù)列也有可能是遞減數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B是△ABC的內(nèi)角,且cosA=
3
5
,sinB=
5
13
,則sin(A+B)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(3,3),B(-4,2),C(0,-2).
(1)求直線AB和AC的斜率;
(2)若點(diǎn)D在線段BC上(包括端點(diǎn))移動(dòng),求直線AD的斜率的變化范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案