【題目】設(shè)實數(shù)滿足不等式函數(shù)無極值點.
(1)若“”為假命題,“”為真命題,求實數(shù)的取值范圍;
(2)已知“”為真命題,并記為,且,若是的必要不充分條件,求正整數(shù)的值.
【答案】(1);(2).
【解析】
試題分析:由,得;函數(shù)無極值點,恒成立,得,解得.(1)“”為假命題,“”為真命題,則與只有一個命題是真命題,分成真假和假真兩類來求的取值范圍;(2)“”為真命題,兩個都是真命題,所以.將因式分解得,解得或,,是的必要不充分條件得,解得,所以.
試題解析:
由,得,即................1分
∵函數(shù)無極值點,∴恒成立,得,解得,
即..................................3分
(1)∵“”為假命題,“”為真命題,∴與只有一個命題是真命題.
若為真命題,為假命題,則;.....................5分
若為真命題,為假命題,則..............6分
于是,實數(shù)的取值范圍為.....................7分
(2)∵“”為真命題,∴..............8分
又,
∴,
∴或,...................10分
即或,從而,
∵是的必要不充分條件,即是的充分不必要條件,
∴,解得,∵,∴..................12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}中,a2=5,S5=40.等比數(shù)列{bn}中,b1=3,b4=81,
(1)求{an}和{bn}的通項公式
(2)令cn=anbn,求數(shù)列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項均為正數(shù)的數(shù)列滿足(為常數(shù)),其中為數(shù)列的前項和.
(1)若,,求證:是等差數(shù)列;
(2)若,,求數(shù)列的通項公式;
(3)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形為正方形,點分別為線段上的點,.
(1)求證:平面平面;
(2)求證:當(dāng)點不與點重合時,平面;
(3)當(dāng),時,求點到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點E,F分別是PC,BD的中點。
(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,橢圓:的左、右焦點分別為,右頂點為,上頂點為, 若成等比數(shù)列,橢圓上的點到焦點的最短距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為直線上任意一點,過的直線交橢圓于點,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體ABCD中,截面PQMN是正方形,則下列命題中,正確的為________ (填序號).
①AC⊥BD;②AC∥截面PQMN;③AC=BD;④異面直線PM與BD所成的角為45°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如下圖示.
(Ⅰ)求直方圖中x的值;
(Ⅱ)求月平均用電量的眾數(shù)和中位數(shù);
(Ⅲ)在月平均用電量為[220,240),[240,260),[260,280)的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com