【題目】某城市100戶居民的月平均用電量(單位:度)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如下圖示.
(Ⅰ)求直方圖中x的值;
(Ⅱ)求月平均用電量的眾數(shù)和中位數(shù);
(Ⅲ)在月平均用電量為[220,240),[240,260),[260,280)的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?
【答案】(Ⅰ)0.0075;(Ⅱ),224;(Ⅲ)5(戶).
【解析】試題分析:
(1)利用頻率分布直方圖小長方形的面積之和為1可得x=0.0075;
(2)結(jié)合所給的數(shù)據(jù)可得:月平均用電量的眾數(shù)和中位數(shù)為,224;
(3)結(jié)合頻率分布直方圖和分層抽樣的概念可得月平均用電量在[220,240)的用戶中應(yīng)抽取5戶.
試題解析:
(Ⅰ)由直方圖的性質(zhì),可得
(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1
得:x=0.0075,所以直方圖中x的值是0.0075.
(Ⅱ)月平均用電量的眾數(shù)是.
因為(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用電量的中位數(shù)在[220,240)內(nèi),
設(shè)中位數(shù)為a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5,
解得:a=224,
所以月平均用電量的中位數(shù)是224.
(Ⅲ)月平均用電量為[220,240]的用戶有0.0125×20×100=25(戶),月平均用電量為[240,260)的用戶有0.0075×20×100=15(戶),月平均用電量為[260,280)的用戶有:
0.005×20×100=10(戶),
抽取比例,所以月平均用電量在[220,240)的用戶中應(yīng)抽取(戶).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)實數(shù)滿足不等式函數(shù)無極值點.
(1)若“”為假命題,“”為真命題,求實數(shù)的取值范圍;
(2)已知“”為真命題,并記為,且,若是的必要不充分條件,求正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,點是棱的中點,,平面平面.
(Ⅰ)求證://平面;
(Ⅱ)求證:平面;
(Ⅲ) 設(shè),試判斷平面⊥平面能否成立;若成立,寫出的一個值(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在區(qū)間上, , , , , , 均可為一個三角形的三邊長,則稱函數(shù)為“三角形函數(shù)”.已知函數(shù)在區(qū)間上是“三角形函數(shù)”,則實數(shù)的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的三內(nèi)角A,B,C的對邊分別是a,b,c,且b(sinB-sinC)+(c-a)(sinA+sinC)=0.
(Ⅰ)求角A的大;
(Ⅱ)若,,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線過點.
(1)求圓的圓心坐標(biāo)和半徑;
(2)若直線與圓相切,求直線的方程;
(3)若直線與圓相交于P,Q兩點,求三角形CPQ的面積的最大值,并求此時
直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)某設(shè)備的使用年限x(年)和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
試求:(1)y與x之間的回歸方程;
(2)當(dāng)使用年限為10年時,估計維修費用是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有一調(diào)查小組為了解本校學(xué)生假期中白天在家時間的情況,從全校學(xué)生中抽取人,統(tǒng)計他們平均每天在家的時間(在家時間在小時以上的就認(rèn)為具有“宅”屬性,否則就認(rèn)為不具有“宅”屬性)
具有“宅”屬性 | 不具有“宅”屬性 | 總計 | |
男生 | 20 | 50 | 70 |
女生 | 10 | 40 | 50 |
總計 | 30 | 90 | 120 |
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷能否在犯錯誤的概率不超過
的前提下認(rèn)為“是否具有‘宅’屬性與性別有關(guān)?”
(2)采用分層抽樣的方法從具有“宅”屬性的學(xué)生里抽取一個人的樣本,其中男生和女生各多少人?
從人中隨機(jī)選取人做進(jìn)一步的調(diào)查,求選取的人至少有名女生的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 5.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,,是的中點.
(1)求證:平面平面;
(2)若二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com