【題目】近年來,隨著科學(xué)技術(shù)迅猛發(fā)展,國內(nèi)有實(shí)力的企業(yè)紛紛進(jìn)行海外布局,如在智能手機(jī)行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機(jī)公司一直默默拓展海外市場,在海外設(shè)多個分支機(jī)構(gòu)需要國內(nèi)公司外派大量80后、90后中青年員工.該企業(yè)為了解這兩個年齡層員工對是否愿意接受外派工作的態(tài)度隨機(jī)調(diào)查了100位員工,得到數(shù)據(jù)如下表:
愿意接受外派人數(shù) | 不愿意接受外派人數(shù) | 合計 | |
80后 | 20 | 20 | 40 |
90后 | 40 | 20 | 60 |
合計 | 60 | 40 | 100 |
(Ⅰ)根據(jù)調(diào)查的數(shù)據(jù),判斷能否在犯錯誤的概率不超過0.1的前提下認(rèn)為“是否愿意接受外派與年齡層有關(guān)”,并說明理由;
(Ⅱ)該公司選派12人參觀駐海外分支機(jī)構(gòu)的交流體驗(yàn)活動,在參與調(diào)查的80后員工中用分層抽樣方法抽出6名,組成80后組,在參與調(diào)查的90后員工中,也用分層抽樣方法抽出6名,組成90后組
①求這12 人中,80后組90后組愿意接受外派的人數(shù)各有多少?
②為方便交流,在80后組、90后組中各選出3人進(jìn)行交流,記在80后組中選到愿意接受外派的人數(shù)為,在90 后組中選到愿意接受外派的人數(shù)為,求的概率.
參考數(shù)據(jù):
參考公式:,其中
【答案】(Ⅰ)在犯錯誤的概率不超過0.1的前提下認(rèn)為“是否愿意接受外派與年齡有關(guān)”.
(Ⅱ) ①4. ②.
【解析】試題分析:
(Ⅰ)由列聯(lián)表中的數(shù)據(jù)可得,故可得在犯錯誤的概率不超過0.1的前提下認(rèn)為“是否愿意接受外派與年齡有關(guān)” (Ⅱ)①由分層抽樣知80后組中,愿意接受外派人數(shù)為3,在90后組中,愿意接受外派人數(shù)為4.②結(jié)合題意得到“”的各種情形,分別求的概率后根據(jù)互斥事件的概率公式可得結(jié)果.
試題解析:
(Ⅰ)由列聯(lián)表可得
,
所以在犯錯誤的概率不超過0.1的前提下認(rèn)為“是否愿意接受外派與年齡有關(guān)”.
(Ⅱ)①由分層抽樣知80后組中,愿意接受外派人數(shù)為3,在90后組中,愿意接受外派人數(shù)為4.
②“”包含“”,“”,“”,“”,“”,“”六種情況.
且,,
,,
,.
∴.
即的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,E為PA的中點(diǎn),F為BC的中點(diǎn),底面ABCD是菱形,對角線AC,BD交于點(diǎn)O.求證:
(1)平面EFO∥平面PCD;
(2)平面PAC⊥平面PBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三個關(guān)于x的不等式:①;②;③
(1)分別求出①和②的解集;
(2)若同時滿足①和②的x值也滿足③,求m的取值范圍;
(3)若同時滿足③的x至少滿足①和②的一個,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng) 時,求曲線 在點(diǎn) 處的切線方程;
(2)求 的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某重點(diǎn)中學(xué)100位學(xué)生在市統(tǒng)考中的理科綜合分?jǐn)?shù),以, , , , , , 分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求理科綜合分?jǐn)?shù)的眾數(shù)和中位數(shù);
(3)在理科綜合分?jǐn)?shù)為, , , 的四組學(xué)生中,用分層抽樣的方法抽取11名學(xué)生,則理科綜合分?jǐn)?shù)在的學(xué)生中應(yīng)抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)將函數(shù)寫成分段函數(shù)的形式,并作出此函數(shù)的圖象;
(2)判斷函數(shù)在上的單調(diào)性,并加以證明;
(3)若關(guān)于的方程在區(qū)間上有兩個不相等的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),函數(shù),,其中為常數(shù)且,令函數(shù).
(1)求函數(shù)的表達(dá)式,并求其定義域;
(2)當(dāng)時,求函數(shù)的值域;
(3)是否存在自然數(shù),使得函數(shù)的值域恰為?若存在,試寫出所有滿足條件的自然數(shù)所構(gòu)成的集合;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請在①充分不必要條件,②必要不充分條件,③充要條件這三個條件中任選一個,補(bǔ)充在下面問題(2)中,若問題(2)中的實(shí)數(shù)存在,求出的取值范圍;若不存在,說明理由.
已知集合.
(1)求集合;
(2)若是成立的______條件,判斷實(shí)數(shù)是否存在?
注:如果選擇多個條件分別解答,按第一個解答計分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com