【題目】已知函數(shù)為實數(shù))的圖像在點處的切線方程為.
(1)求實數(shù)的值及函數(shù)的單調(diào)區(qū)間;
(2)設函數(shù),證明時, .
【答案】(1)函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)見解析.
【解析】試題分析:(1)由導數(shù)幾何意義得,又,解方程組可得.再求導函數(shù)零點,根據(jù)導函數(shù)符號變化規(guī)律確定函數(shù)單調(diào)區(qū)間,(2)先化簡條件得,再等價轉(zhuǎn)化不等式:要證,需證,即證,最后構(gòu)造函數(shù),其中,利用導數(shù)研究函數(shù)單調(diào)性: 在區(qū)間內(nèi)單調(diào)遞增,即得,從而結(jié)論得證.
試題解析:(1)由題得,函數(shù)的定義域為, ,
因為曲線在點處的切線方程為,
所以解得.
令,得,
當時, , 在區(qū)間內(nèi)單調(diào)遞減;
當時, , 在區(qū)間內(nèi)單調(diào)遞增.
所以函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(2)由(1)得, .
由,得,即.
要證,需證,即證,
設,則要證,等價于證: .
令,則,
∴在區(qū)間內(nèi)單調(diào)遞增, ,
即,故.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在某港口處獲悉,其正東方向距離20n mile的處有一艘漁船遇險等待營救,此時救援船在港口的南偏西30°距港口10n mile的C處,救援船接到救援命令立即從C處沿直線前往B處營救漁船.
(1)求接到救援命令時救援船距漁船的距離;
(2)試問救援船在C處應朝北偏東多少度的方向沿直線前往B處救援?(已知)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱的底面是邊長為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長是, 是的中點.
(1)求證: 平面;
(2)求二面角的大;
(3)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱柱中,底面,底面是梯形,,,.
(1)求證:平面平面;
(2)在線段上是否存在一點,使平面,若存在,請確定點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ) 圖象上的任意兩點,且角φ的終邊經(jīng)過點 ,若|f(x1)﹣f(x2)|=4時,|x1﹣x2|的最小值為 .
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當 時,不等式mf(x)+2m≥f(x)恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中, 是正三角形,四邊形是矩形,且.
(1)求證:平面平面;
(2)若點在線段上,且,當三棱錐的體積為時,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,焦點為,點在拋物線上,且到的距離比到直線的距離小1.
(1)求拋物線的方程;
(2)若點為直線上的任意一點,過點作拋物線的切線與,切點分別為,求證:直線恒過某一定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,準線為,拋物線上一點的橫坐標為1,且到焦點的距離為2.
(1)求拋物線的方程;
(2)設是拋物線上異于原點的兩個不同點,直線和的傾斜角分別為和,當變化且為定值時,證明直線恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(14分)關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)
(1)已知不等式的解集為(﹣∞,﹣1]∪[2,+∞),求a的值;
(2)解關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com