【題目】元朝著名的數(shù)學家朱世杰在《四元玉鑒》中有一首詩:我有一壺酒,攜著游春走.遇店添一倍,逢友飲一斗.”基于此情景,設計了如圖所示的程序框圖,若輸入的,輸出的,則判斷框中可以填(

A.B.C.D.

【答案】B

【解析】

根據(jù)程序框圖的算法功能,模擬程序運行,即可求出.

根據(jù)程序框圖可知,直到型循環(huán)結構,先執(zhí)行循環(huán)體,條件不滿足,繼續(xù)執(zhí)行循環(huán)體,條件滿足,跳出循環(huán)體,所以,

當?shù)谝淮螆?zhí)行循環(huán)體時,,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;

當?shù)诙螆?zhí)行循環(huán)體時,,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;

當?shù)谌螆?zhí)行循環(huán)體時,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;

當?shù)谒拇螆?zhí)行循環(huán)體時,,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;

當?shù)谖宕螆?zhí)行循環(huán)體時,,,條件滿足,跳出循環(huán)體,輸出,

即可知判斷框中條件為:

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標平面中,ABC的兩個頂點A、B的坐標分別為A(﹣1,0),B 1,0),平面內兩點G、M同時滿足下列條件:(1;(2;(3,則ABC的頂點C的軌跡方程為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過雙曲線C1a0,b0)右焦點F2作雙曲線一條漸近線的垂線,垂足為P,與雙曲線交于點A,若 ,則雙曲線C的漸近線方程為(

A.y=±xB.y=±xC.y=±2xD.y=±x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求的極大值點;

2)當時,若過點存在3條直線與曲線相切,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E,過右焦點F的直線l與橢圓E交于A,B兩點(AB兩點不在x軸上),橢圓EA,B兩點處的切線交于P,點P在定直線.

1)記點,求過點與橢圓E相切的直線方程;

2)以為直徑的圓過點F,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】超級細菌是一種耐藥性細菌,產生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應的抗生素產生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒,痙攣,昏迷甚至死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現(xiàn)有n)份血液樣本,每個樣本取到的可能性相等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗n次;(2)混合檢驗,將其中k)份血液樣本分別取樣混合在一起檢驗,若檢驗結果為陰性,則這份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了;如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份血液再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為.假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p.現(xiàn)取其中k)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.

1)運用概率統(tǒng)計的知識,若,試求P關于k的函數(shù)關系式;

2)若P與抗生素計量相關,其中,,)是不同的正實數(shù),滿足,對任意的),都有.

i)證明:為等比數(shù)列;

ii)當時,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)期望值比逐份檢驗的總次數(shù)期望值更少,求k的最大值.

參考數(shù)據(jù):,,,

,,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).為自然對數(shù)的底數(shù))

1)當時,設,求函數(shù)上的最值;

2)當時,證明:,其中表示中較小的數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓 的左右焦點分別為的、,離心率為;過拋物線焦點的直線交拋物線于兩點,當時, 點在軸上的射影為。連結并延長分別交、兩點,連接; 的面積分別記為, ,設.

)求橢圓和拋物線的方程;

)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)().

1)當時,若函數(shù)上有兩個零點,求的取值范圍;

2)當時,是否存在,使得不等式恒成立?若存在,求出的取值集合;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案