3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$.設(shè)過(guò)點(diǎn)F2的直線l與橢圓C相交于不同兩點(diǎn)A,B,$△ABF_1^{\;}$周長(zhǎng)為8.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)T(4,0),證明:當(dāng)直線l變化時(shí),總有TA與TB的斜率之和為定值.

分析 (Ⅰ)由△MNF1的周長(zhǎng)為8,得4a=8,由e=$\frac{1}{2}$,求出c,可求得b;即可求解橢圓方程.
(Ⅱ)分類討論,當(dāng)直線l不垂直與x軸時(shí),設(shè)直線方程,代入橢圓方程,由韋達(dá)定理及直線的斜率公式,即可求得kTA+kTB=0,即可證明直線TA與TB的斜率之和為定值.

解答 解:(I)由題意知,4a=8,所以a=2.
因?yàn)閑=$\frac{1}{2}$,所以c=1,則b=$\sqrt{3}$.
所以橢圓C的方程為 $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(Ⅱ)證明:當(dāng)直線l垂直與x軸時(shí),顯然直線TS與TR的斜率之和為0,
當(dāng)直線l不垂直與x軸時(shí),設(shè)直線l的方程為y=k(x-1),A(x1,y1),B(x2,y2),
$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(3+4k2)x2-8k2x+4k2x+4k2-12=0,
△=64k4-4(3+4k2)(4k2-12)=k2+1>0恒成立,
x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
由kTA+kTB=$\frac{{y}_{1}}{{x}_{1}-4}$+$\frac{{y}_{2}}{{x}_{2}-4}$=$\frac{k({x}_{1}-1)({x}_{2}-4)+k({x}_{2}-1)({x}_{1}-4)}{({x}_{1}-4)({x}_{2}-4)}$
=$\frac{k[2{x}_{1}{x}_{2}-5({x}_{1}+{x}_{2})+8]}{({x}_{1}-4)({x}_{2}-4)}$,TA,TB的斜率存在,
由A,B兩點(diǎn)的直線y=k(x-1),
故y1=k(x1-1),y2=k(x2-1),
由2x1x2-5(x1+x2)+8=$\frac{8{k}^{2}-24-40{k}^{2}+8(3+4{k}^{2})}{3+4{k}^{2}}$=0,
∴kTA+kTB=0,
∴直線TA與TB的斜率之和為0,
綜上所述,直線TA與TB的斜率之和為定值,定值為0.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),直線與橢圓的位置關(guān)系,考查韋達(dá)定理,直線的斜率公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,4),則向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影為(  )
A.2$\sqrt{5}$B.2C.$\sqrt{5}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{{x}^{2}-2x+1(x>0)}\end{array}\right.$在[-1,a](a>2)上最大值與最小值之差為4,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知f(x)=$\frac{1}{{2}^{x}+1}$,則f(log32)+f(log3$\frac{1}{2}$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)集合A={(x,y)|(x-4)2+y2=r2,r>0},B={(x,y)|x2+(y-3)2=36},若A∩B中有且只有一個(gè)元素,則r的取值集合為{1,11}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在△ABC中,sin2A=sin2B+sin2C+sinBsinC,則角A等于$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下數(shù)據(jù)資料:
日期1月10日2月10日3月10日4月10日5月10日6月10日
晝夜溫差x(℃)1011131286
就診人數(shù)y(個(gè))222529261612
該興趣小組確定的研究方案是:先從這6組(每個(gè)有序數(shù)對(duì)(x,y)叫作一組)數(shù)據(jù)中隨機(jī)選取2組作為檢驗(yàn)數(shù)據(jù),用剩下的4組數(shù)據(jù)求線性回歸方程.
(1)求選取的2組數(shù)據(jù)恰好來(lái)自相鄰兩個(gè)月的概率;
(2)若選取的是1月和6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)(2)中所得到的線性回歸方程是否是理想的?
參考公式:$\left\{\begin{array}{l}{\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某市工業(yè)部門計(jì)劃對(duì)所轄中小型工業(yè)企業(yè)推行節(jié)能降耗技術(shù)改造,對(duì)所轄企業(yè)是否支持改造進(jìn)行問(wèn)卷調(diào)查,結(jié)果如表:
支持不支持合計(jì)
中型企業(yè)603090
小型企業(yè)120100220
合計(jì)180130310
(1)能否在犯錯(cuò)誤的概率不超過(guò)0.050的前提下認(rèn)為“是否支持節(jié)能降耗技術(shù)改造與企業(yè)規(guī)模有關(guān)”?
(2)從180家支持節(jié)能降耗改造的企業(yè)抽出12家,其中中、小型企業(yè)分別為4家和8家,然后從這12家中選出9家進(jìn)行獎(jiǎng)勵(lì),分別獎(jiǎng)勵(lì)中、小型企業(yè)每家50萬(wàn)元、10萬(wàn)元,記9家企業(yè)所獲獎(jiǎng)勵(lì)總數(shù)為X萬(wàn)元,求X的分布列和數(shù)學(xué)期望.
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d

P(K2≥k)0.0500.0250.010
k3.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.過(guò)點(diǎn)M(1,3)引圓x2+y2=2的切線,切點(diǎn)分別為A,B,則sin∠AMB=( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案