19.設(shè)x,y為非零實(shí)數(shù),a>0,且a≠1,給出下列式子或運(yùn)算:
①logax2=3logax;
②loga|xy|=loga|x|•loga|y|;
③若e=lnx,則x=e2
④若lg(lny)=0,則y=e;
⑤若${2^{1+{{log}_4}x}}$=16,則x=64.
其中正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4

分析 利用對(duì)數(shù)的定義及其運(yùn)算法則即可判斷出正誤.

解答 解:x,y為非零實(shí)數(shù),a>0,且a≠1,給出下列式子或運(yùn)算:
①x<0時(shí),logax2=3logax不成立;
②loga|xy|=loga|x|+loga|y|,不正確;
③若e=lnx,則x=ee,不正確.
④若lg(lny)=0,則lny=1,y=e,正確;
⑤若${2^{1+{{log}_4}x}}$=16,則1+log4x=4,x=43=64,正確.
其中正確的個(gè)數(shù)為2.
故選:B.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的定義及其運(yùn)算性質(zhì),考查了分類討論方法、推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知A(1,-2,11),B(4,2,3),C(6,-1,4).則△ABC的面積是( 。
A.$\frac{{5\sqrt{42}}}{2}$B.$5\sqrt{42}$C.$5\sqrt{3}$D.$5\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若x>0,y>0,x+y=1,則$xy+\frac{2}{xy}$的最小值是(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\frac{33}{2}$D.$\frac{33}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知命題p:方程$\frac{x^2}{k-2}-\frac{y^2}{5-k}=1$表示焦點(diǎn)在x軸上的雙曲線,命題q:?x∈(0,+∞),x2+1≥kx恒成立,若“p∨q”是真命題,“¬(p∧q)”也是真命題,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ),θ∈(0,π)的圖象關(guān)于y軸對(duì)稱,則θ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,在四棱錐P-ABCD中,側(cè)面PAD為正三角形,底面ABCD是邊長(zhǎng)為2的正方形,側(cè)面PAD⊥底面ABCD,M為底面ABCD內(nèi)的一個(gè)動(dòng)點(diǎn),且滿足MP=MC,則點(diǎn)M在正方形ABCD內(nèi)的軌跡的長(zhǎng)度為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若sin(π-α)=2cosα,則${(x+\frac{tanα}{x})^6}$展開(kāi)式中常數(shù)項(xiàng)為( 。
A.$\frac{5}{2}$B.160C.$-\frac{5}{2}$D.-160

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知扇形的周長(zhǎng)是4cm,則扇形面積最大時(shí)候扇形的中心角弧度數(shù)是( 。
A.2B.1C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知$|{\begin{array}{l}{x+3}&{x^2}\\ 1&4\end{array}}|<0$,則實(shí)數(shù)x的取值范圍是(-∞,-2)∪(6,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案