【題目】某公司為提高市場銷售業(yè)績,設(shè)計了一套產(chǎn)品促銷方案,并在某地區(qū)部分營銷網(wǎng)點進行試點.運作一年后,對采取促銷沒有采取促銷的營銷網(wǎng)點各選了50個,對比上一年度的銷售情況,分別統(tǒng)計了它們的年銷售總額,并按年銷售總額增長的百分點分成5組:,,,,,分別統(tǒng)計后制成如圖所示的頻率分布直方圖,并規(guī)定年銷售總額增長10個百分點及以上的營銷網(wǎng)點為精英店”.

采用促銷的銷售網(wǎng)點

不采用促銷的銷售網(wǎng)點

1)請根據(jù)題中信息填充下面的列聯(lián)表,并判斷是否有的把握認為精英店與采促銷活動有關(guān);

采用促銷

無促銷

合計

精英店

非精英店

合計

50

50

100

2)某精英店為了創(chuàng)造更大的利潤,通過分析上一年度的售價(單位:元)和日銷量(單位:件)()的一組數(shù)據(jù)后決定選擇作為回歸模型進行擬合.具體數(shù)據(jù)如下表,表中的

45.8

395.5

2413.5

4.6

21.6

①根據(jù)上表數(shù)據(jù)計算的值;

②已知該公司產(chǎn)品的成本為10/件,促銷費用平均5/件,根據(jù)所求出的回歸模型,分析售價定為多少時日利潤可以達到最大.

附①:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附②:對應(yīng)一組數(shù)據(jù)

其回歸直線的斜率和截距的最小二乘法估計分別為,.

【答案】1)有的把握認為精英店與促銷活動有關(guān); 2)①.

②當售價元時,日利潤達到最大為.

【解析】

(1)根據(jù)圖表補全列聯(lián)表,再計算判斷即可.

(2)根據(jù)線性回歸方程的方法求解函數(shù)表達式,再求導(dǎo)分析單調(diào)性與最值即可.

1

采用促銷

無促銷

合計

精英店

35

20

55

非精英店

15

30

45

合計

50

50

100

因為,

的把握認為精英店與促銷活動有關(guān)”.

2)①由公式可得:,,

所以回歸方程為.

②若售價為,單件利潤為,日銷售為,

故日利潤,,

時,單調(diào)遞增;

時,單調(diào)遞減.

故當售價元時,日利潤達到最大為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是圓柱體的一條母線,過底面圓的圓心是圓上不與、重合的任意一點,已知棱,.

1)求異面直線與平面所成角的大小;

2)將四面體繞母線旋轉(zhuǎn)一周,求三邊旋轉(zhuǎn)過程中所圍成的幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形垂直于正方形垂直于平面.且

(1)求三棱錐的體積;

(2)求證:面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),如果存在實數(shù),且不同時成立),使得恒成立,則稱函數(shù)映像函數(shù)”.

1)判斷函數(shù)是否是映像函數(shù),如果是,請求出相應(yīng)的的值,若不是,請說明理由;

2)已知函數(shù)是定義在上的映像函數(shù),且當時,.求函數(shù))的反函數(shù);

3)在(2)的條件下,試構(gòu)造一個數(shù)列,使得當時,,并求時,函數(shù)的解析式,及的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

(本題滿分15分)已知m1,直線,

橢圓,分別為橢圓的左、右焦點.

)當直線過右焦點時,求直線的方程;

)設(shè)直線與橢圓交于兩點,,

的重心分別為.若原點在以線段

為直徑的圓內(nèi),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】半圓的直徑的兩端點為,點在半圓及直徑上運動,若將點的縱坐標伸長到原來的2倍(橫坐標不變)得到點,記點的軌跡為曲線.

(1)求曲線的方程;

(2)若稱封閉曲線上任意兩點距離的最大值為該曲線的直徑,求曲線直徑”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,△ABC為一個等腰三角形形狀的空地,腰CA的長為3(百米),底AB的長為4(百米).現(xiàn)決定在該空地內(nèi)筑一條筆直的小路EF(寬度不計),將該空地分成一個四邊形和一個三角形,設(shè)分成的四邊形和三角形的周長相等、面積分別為S1S2.

(1) 若小路一端EAC的中點,求此時小路的長度;

(2) 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,給定個整點,其中.

(Ⅰ)當,從上面的個整點中任取兩個不同的整點,求的所有可能值;

(Ⅱ)從上面個整點中任取個不同的整點,.

i)證明:存在互不相同的四個整點,滿足,;

ii)證明:存在互不相同的四個整點,滿足,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若時,討論的單調(diào)性;

2)設(shè),若有兩個零點,求的取值范圍

查看答案和解析>>

同步練習冊答案