【題目】如圖,矩形垂直于正方形垂直于平面.且.
(1)求三棱錐的體積;
(2)求證:面面.
【答案】(Ⅰ);(Ⅱ)詳見解析.
【解析】
(1)因為面面,
面面,
所以
又因為面,故,
因為,
所以即三棱錐的高,
因此三棱錐的體積
(2)如圖,設的中點為,連結.
在中可求得;
在直角梯形中可求得;
在中可求得
從而在等腰,等腰中分別求得,
此時在中有,
所以
因為是等腰底邊中點,所以,
所以,
因此面面
【方法點晴】
本題主要考查的是線面垂直和面面垂直的判定定理和性質定理,屬于中檔題.再立體幾何中如果題目條件中有面面垂直,則必然會用到面面垂直的性質定理,即由面面垂直得線面垂直;證明線面垂直的關鍵是證明線線垂直,證明線線垂直常用的方法是直角三角形、等腰三角形的“三線合一”和菱形、正方形的對角線.本題用到了直角三角形.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,O為AC與BD的交點,E為棱PB上一點.
(1)證明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,求三棱錐P-EAD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知全集為,,定義集合的特征函數(shù)為,對于,,給出下列四個結論:
(1)對任意,有
(2)對任意,若,則
(3)對任意,有
(4)對任意,有
其中,正確的序號是_____
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且
()求數(shù)列的通項公式;
()若數(shù)列滿足,求數(shù)列的通項公式;
()在()的條件下,設,問是否存在實數(shù)使得數(shù)列是單調遞增數(shù)列?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù)的對稱性有如下結論:對于給定的函數(shù),如果對于任意的都有成立為常數(shù)),則函數(shù)關于點對稱.
(1)用題設中的結論證明:函數(shù)關于點;
(2)若函數(shù)既關于點對稱,又關于點對稱,且當時,,求:①的值;
②當時,的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的值域是,有下列結論:①當時,; ②當時,;③當時,; ④當時,.其中結論正確的所有的序號是( ).
A.①②B.③④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為提高市場銷售業(yè)績,設計了一套產(chǎn)品促銷方案,并在某地區(qū)部分營銷網(wǎng)點進行試點.運作一年后,對“采取促銷”和“沒有采取促銷”的營銷網(wǎng)點各選了50個,對比上一年度的銷售情況,分別統(tǒng)計了它們的年銷售總額,并按年銷售總額增長的百分點分成5組:,,,,,分別統(tǒng)計后制成如圖所示的頻率分布直方圖,并規(guī)定年銷售總額增長10個百分點及以上的營銷網(wǎng)點為“精英店”.
“采用促銷”的銷售網(wǎng)點
“不采用促銷”的銷售網(wǎng)點
(1)請根據(jù)題中信息填充下面的列聯(lián)表,并判斷是否有的把握認為“精英店與采促銷活動有關”;
采用促銷 | 無促銷 | 合計 | |
精英店 | |||
非精英店 | |||
合計 | 50 | 50 | 100 |
(2)某“精英店”為了創(chuàng)造更大的利潤,通過分析上一年度的售價(單位:元)和日銷量(單位:件)()的一組數(shù)據(jù)后決定選擇作為回歸模型進行擬合.具體數(shù)據(jù)如下表,表中的
45.8 | 395.5 | 2413.5 | 4.6 | 21.6 |
①根據(jù)上表數(shù)據(jù)計算,的值;
②已知該公司產(chǎn)品的成本為10元/件,促銷費用平均5元/件,根據(jù)所求出的回歸模型,分析售價定為多少時日利潤可以達到最大.
附①:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
附②:對應一組數(shù)據(jù),
其回歸直線的斜率和截距的最小二乘法估計分別為,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com