【題目】如圖,在四棱錐中,,,,且PC=BC=2AD=2CD=2,.
(1)平面;
(2)已知點在線段上,且,求點到平面的距離.
【答案】(1)見證明;(2)
【解析】
(1)要證平面,只需證明,即可.由勾股定理易證,又由可得 平面,進而可得,因此可得結(jié)論成立.
(2)法一:可由等體積法求解,由,易得點到平面的距離;
法二:先證,由三角形相似,也可求出點到平面的距離.
(1)∵在底面中,,
且
∴,∴
又∵,,平面,平面
∴平面 又∵平面 ∴
∵, ∴
又∵,,平面,平面
∴平面
(2)方法一:在線段上取點,使,則
又由(1)得平面,平面
又∵平面,∴
作于 又∵,平面,平面
∴平面 又∵平面 ∴
設(shè)點到平面的距離為
則由得
∴點到平面的距離
方法二:由(1)知平面,∴平面平面,平面平面
∵,平面平面 ∴平面
∴平面平面①
又∵平面,平面 ∴
,,∴,∴
∴ ∴ ∴②
平面平面③
由①②③得平面,∴平面平面
又∵平面平面 ∴過作交于點 ∴平面
即的長就是點到平面的距離.
在中,,
∴
科目:高中數(shù)學 來源: 題型:
【題目】[2019·清遠期末]一只紅鈴蟲的產(chǎn)卵數(shù)和溫度有關(guān),現(xiàn)收集了4組觀測數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點圖如下:
溫度 | 20 | 25 | 30 | 35 |
產(chǎn)卵數(shù)/個 | 5 | 20 | 100 | 325 |
(1)根據(jù)散點圖判斷與哪一個更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(數(shù)字保留2位小數(shù));
(3)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在多少以下?(最后結(jié)果保留到整數(shù))
參考數(shù)據(jù):,,,,,,,,,,
5 | 20 | 100 | 325 | |
1.61 | 3 | 4.61 | 5.78 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C:
(1)若圓C與x軸相切,求實數(shù)a的值;
(2)若M,N為圓C上不同的兩點,過點M,N分別作圓C的切線,若與相交于點P,圓C上異于M,N另有一點Q,滿足,若直線:上存在唯一的一個點T,使得,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,,,,且,.
(1)證明:平面;
(2)在線段上,是否存在一點,使得二面角的大小為?如果存在,求的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ) 的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)求f(x)的單調(diào)減區(qū)間
(3)當時,求f(x)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從甲地到乙地要經(jīng)過3個十字路口,設(shè)各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.
(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量的分布列和數(shù)學期望;
(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點和橢圓. 直線與橢圓交于不同的兩點.
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 當時,求的面積;
(Ⅲ)設(shè)直線與橢圓的另一個交點為,當為中點時,求的值 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com