已知.
(Ⅰ)當(dāng)時,判斷的奇偶性,并說明理由;
(Ⅱ)當(dāng)時,若,求的值;
(Ⅲ)若,且對任何不等式恒成立,求實數(shù)的取值范圍.
(Ⅰ)既不是奇函數(shù),也不是偶函數(shù);(Ⅱ)或;
(Ⅲ)的取值范圍是.
解析試題分析:(Ⅰ)對函數(shù)奇偶性的判斷,一定要結(jié)合函數(shù)特征先作大致判斷,然后再根據(jù)奇函數(shù)偶函數(shù)的定義作嚴(yán)格的證明.當(dāng)時,,從解析式可以看出它既不是奇函數(shù),也不是偶函數(shù).對既不是奇函數(shù),也不是偶函數(shù)的函數(shù),一般取兩個特殊值說明.
(Ⅱ)當(dāng)時,, 由得,這是一個含有絕對值符號的不等式,對這種不等式,一般先分情況去絕對值符號.這又是一個含有指數(shù)式的不等式,對這種不等式,一般將指數(shù)式看作一個整體,先求出指數(shù)式的值,然后再利用指數(shù)式求出的值.
(Ⅲ)不等式恒成立的問題,一般有以下兩種考慮,一是分離參數(shù),二是直接求最值.在本題中,分離參數(shù)比較容易.分離參數(shù)時需要除以,故首先考慮的情況. 易得時,取任意實數(shù),不等式恒成立.
,此時原不等式變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/a0/5/68pbz1.png" style="vertical-align:middle;" />;即,這時應(yīng)滿足:,所以接下來就求的最大值和的最小值.
試題解析:(Ⅰ)當(dāng)時,既不是奇函數(shù)也不是偶函數(shù)
∵,∴
所以既不是奇函數(shù),也不是偶函數(shù) 3分
(Ⅱ)當(dāng)時,, 由得
即或
解得或(舍),或.
所以或 8分
(Ⅲ)當(dāng)時,取任意實數(shù),不等式恒成立,
故只需考慮,此時原不等式變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/a0/5/68pbz1.png" style="vertical-align:middle;" />
即
故
又函數(shù)在上單調(diào)遞增,所以;
對于函數(shù)
當(dāng)時,在上單調(diào)遞減,,又,
所以,此時的取值范圍是 13分
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)若,判斷函數(shù)的奇偶性,并加以證明;
(2)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(3)若存在實數(shù)使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3+ax-2,(aR).
(l)若f(x)在區(qū)間(1,+)上是增函數(shù),求實數(shù)a的取值范圍;
(2)若,且f(x0)=3,求x0的值;
(3)若,且在R上是減函數(shù),求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),,為常數(shù)
(1)求的最小值的解析式;
(2)在(1)中,是否存在最小的整數(shù),使得對于任意均成立,若存在,求出 的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是定義在上的函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)利用函數(shù)單調(diào)性的定義證明:是其定義域上的增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知且,函數(shù),,記.
(Ⅰ)求函數(shù)的定義域及其零點;
(Ⅱ)若關(guān)于的方程在區(qū)間內(nèi)僅有一解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)是定義域為的奇函數(shù).
(1)求的值;
(2)若,且在上的最小值為,求的值.
(3)若,試討論函數(shù)在上零點的個數(shù)情況。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com