設(shè)函數(shù),,為常數(shù)
(1)求的最小值的解析式;
(2)在(1)中,是否存在最小的整數(shù),使得對于任意均成立,若存在,求出 的值;若不存在,請說明理由.
(1);(2).
解析試題分析:(1)根據(jù)二次函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,又函數(shù)的對稱軸為直線,且,可分,,進(jìn)行分類討論,從而求得函數(shù)的最小值的解析式;(2)由(1)知當(dāng)時,函數(shù)為單調(diào)遞減函數(shù),且最大值為,當(dāng)時,函數(shù),在上為單調(diào)遞增,在上單調(diào)遞減,最大值為,當(dāng)時,函數(shù)為單調(diào)遞增,最大值為,所以關(guān)于自變量的函數(shù)的最大值為,又由不等式得,對于任意均成立,從而存在最小的整數(shù).
試題解析:(1)由題意,函數(shù)圖像是開口向上,對稱軸的拋物線,
當(dāng)時,在上是增函數(shù),時有最小值
當(dāng)時,在上是減函數(shù),時有最小值
③當(dāng)時,在上是不單調(diào),時有最小值 8分
(2)存在,由題知在是增函數(shù),在是減函數(shù)
時,,
恒成立,
為整數(shù),的最小值為 14分
考點:二次函數(shù)單調(diào)性、最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有 成立,則稱是上的有界函數(shù),其中稱為函數(shù)的一個上界.
已知函數(shù),.
(1)若函數(shù)為奇函數(shù),求實數(shù)的值;
(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;
(3)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為實常數(shù)).
(1)若函數(shù)圖像上動點到定點的距離的最小值為,求實數(shù)的值;
(2)若函數(shù)在區(qū)間上是增函數(shù),試用函數(shù)單調(diào)性的定義求實數(shù)的取值范圍;
(3)設(shè),若不等式在有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
上海某化學(xué)試劑廠以x千克/小時的速度生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),為了保證產(chǎn)品的質(zhì)量,需要一邊生產(chǎn)一邊運輸,這樣按照目前的市場價格,每小時可獲得利潤是元.
(1)要使生產(chǎn)運輸該產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)運輸900千克該產(chǎn)品獲得的利潤最大,問:該工廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知增函數(shù)是定義在(-1,1)上的奇函數(shù),其中,a為正整數(shù),且滿足.
⑴求函數(shù)的解析式;
⑵求滿足的的范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(Ⅰ)當(dāng)時,判斷的奇偶性,并說明理由;
(Ⅱ)當(dāng)時,若,求的值;
(Ⅲ)若,且對任何不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)定義域為[0,1]的函數(shù)同時滿足以下三個條件時稱為“友誼函數(shù)”:
(1)對任意的,總有≥0;
(2);
(3)若成立,則下列判斷正確的有 .
(1)為“友誼函數(shù)”,則;
(2)函數(shù)在區(qū)間[0,1]上是“友誼函數(shù)”;
(3)若為“友誼函數(shù)”,且0≤<≤1,則≤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對定義在區(qū)間上的函數(shù),若存在閉區(qū)間和常數(shù),使得對任意的,都有,且對任意的都有恒成立,則稱函數(shù)為區(qū)間上的“型”函數(shù).
(1)求證:函數(shù)是上的“型”函數(shù);
(2)設(shè)是(1)中的“型”函數(shù),若不等式對一切的恒成立,求實數(shù)的取值范圍;
(3)若函數(shù)是區(qū)間上的“型”函數(shù),求實數(shù)和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域為的函數(shù)是奇函數(shù).
(1)求的值
(2)判斷并證明的單調(diào)性;
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com